M. L. Busurina, A. E. Sytschev, S. G. Vadchenko, A. V. Karpov
{"title":"2Co-Ti-Al 系统的燃烧特异性和半金属铁磁 Heusler 合金 Co2TiAl 的性质","authors":"M. L. Busurina, A. E. Sytschev, S. G. Vadchenko, A. V. Karpov","doi":"10.1134/S1990793124700544","DOIUrl":null,"url":null,"abstract":"<p>Combustion in the 2Co–Ti–Al system is observed by high-speed video recording. It is established that combustion occurs in the frontal mode, and the process parameters are determined. The maximum rate of the increase in the combustion temperature from the moment of initiation to the maximum value reached is 2.7 × 10<sup>4</sup> K/s. The front propagation velocity calculated from the video recording is 9.4 cm/s. The microhotspot mode of combustion of the reaction composition is found. The temperature dependencies of the electrical resistivity and magnetic moment of the single-phase Co<sub>2</sub>TiAl product synthesized in the combustion mode are measured. For the synthesized Co<sub>2</sub>TiAl sample, the Curie temperature is <i>T</i><sub><i>C</i></sub> = 120 ± 5 K and the electrical resistivity at room temperature is 1.35 μOhm m. It is shown that the electrical and magnetic properties of the Co<sub>2</sub>TiAl alloy obtained in the combustion mode are similar to those of alloys obtained by arc melting.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"18 4","pages":"1002 - 1008"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combustion Peculiarities in the 2Co–Ti–Al System and Properties of the Half-Metallic Ferromagnetic Heusler Alloy Co2TiAl\",\"authors\":\"M. L. Busurina, A. E. Sytschev, S. G. Vadchenko, A. V. Karpov\",\"doi\":\"10.1134/S1990793124700544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Combustion in the 2Co–Ti–Al system is observed by high-speed video recording. It is established that combustion occurs in the frontal mode, and the process parameters are determined. The maximum rate of the increase in the combustion temperature from the moment of initiation to the maximum value reached is 2.7 × 10<sup>4</sup> K/s. The front propagation velocity calculated from the video recording is 9.4 cm/s. The microhotspot mode of combustion of the reaction composition is found. The temperature dependencies of the electrical resistivity and magnetic moment of the single-phase Co<sub>2</sub>TiAl product synthesized in the combustion mode are measured. For the synthesized Co<sub>2</sub>TiAl sample, the Curie temperature is <i>T</i><sub><i>C</i></sub> = 120 ± 5 K and the electrical resistivity at room temperature is 1.35 μOhm m. It is shown that the electrical and magnetic properties of the Co<sub>2</sub>TiAl alloy obtained in the combustion mode are similar to those of alloys obtained by arc melting.</p>\",\"PeriodicalId\":768,\"journal\":{\"name\":\"Russian Journal of Physical Chemistry B\",\"volume\":\"18 4\",\"pages\":\"1002 - 1008\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Physical Chemistry B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990793124700544\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793124700544","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Combustion Peculiarities in the 2Co–Ti–Al System and Properties of the Half-Metallic Ferromagnetic Heusler Alloy Co2TiAl
Combustion in the 2Co–Ti–Al system is observed by high-speed video recording. It is established that combustion occurs in the frontal mode, and the process parameters are determined. The maximum rate of the increase in the combustion temperature from the moment of initiation to the maximum value reached is 2.7 × 104 K/s. The front propagation velocity calculated from the video recording is 9.4 cm/s. The microhotspot mode of combustion of the reaction composition is found. The temperature dependencies of the electrical resistivity and magnetic moment of the single-phase Co2TiAl product synthesized in the combustion mode are measured. For the synthesized Co2TiAl sample, the Curie temperature is TC = 120 ± 5 K and the electrical resistivity at room temperature is 1.35 μOhm m. It is shown that the electrical and magnetic properties of the Co2TiAl alloy obtained in the combustion mode are similar to those of alloys obtained by arc melting.
期刊介绍:
Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.