吡喃并[3,2-C]喹啉酮和喹啉衍生物及其潜在治疗药物的催化合成

IF 1.7 3区 化学 Q3 CHEMISTRY, ORGANIC Current Organic Chemistry Pub Date : 2024-09-06 DOI:10.2174/0113852728331472240826071320
Ashraf A. Aly, Hisham A. Abd El-Naby, Essam Kh. Ahmed, Sageda A. Gedamy, Mohammed B. Alshammari, Akil Ahmed, Stefan Braese
{"title":"吡喃并[3,2-C]喹啉酮和喹啉衍生物及其潜在治疗药物的催化合成","authors":"Ashraf A. Aly, Hisham A. Abd El-Naby, Essam Kh. Ahmed, Sageda A. Gedamy, Mohammed B. Alshammari, Akil Ahmed, Stefan Braese","doi":"10.2174/0113852728331472240826071320","DOIUrl":null,"url":null,"abstract":": Pyrano[3,2-c]quinolone and pyrano[2,3-c]quinoline, as promising molecules, have garnered more attention due to their interesting biological properties. This review dealt with the catalytic synthesis of the former candidates in the last 20 years. Multi-component reactions (MCRs) are synthetic routes that produce a single product from three or more reactants in a one-pot step procedure. We herein reported on the advantages of catalysis in synthesizing the target compounds using the MCR sequence. We also discussed the mechanism and explained the chosen catalyst's utility in the target molecules' selectivity. Finally, this recent review focuses on the biological applications of these molecules as anticancer, antimicrobial activities, anti-diabetic, antiinflammatory, anti-Alzheimer, and antitubercular agents.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic Syntheses of Pyrano[3,2-C]Quinolone and -Quinoline Derivatives and their Potential Therapeutic Agents\",\"authors\":\"Ashraf A. Aly, Hisham A. Abd El-Naby, Essam Kh. Ahmed, Sageda A. Gedamy, Mohammed B. Alshammari, Akil Ahmed, Stefan Braese\",\"doi\":\"10.2174/0113852728331472240826071320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Pyrano[3,2-c]quinolone and pyrano[2,3-c]quinoline, as promising molecules, have garnered more attention due to their interesting biological properties. This review dealt with the catalytic synthesis of the former candidates in the last 20 years. Multi-component reactions (MCRs) are synthetic routes that produce a single product from three or more reactants in a one-pot step procedure. We herein reported on the advantages of catalysis in synthesizing the target compounds using the MCR sequence. We also discussed the mechanism and explained the chosen catalyst's utility in the target molecules' selectivity. Finally, this recent review focuses on the biological applications of these molecules as anticancer, antimicrobial activities, anti-diabetic, antiinflammatory, anti-Alzheimer, and antitubercular agents.\",\"PeriodicalId\":10926,\"journal\":{\"name\":\"Current Organic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0113852728331472240826071320\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728331472240826071320","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

吡喃并[3,2-c]喹啉酮和吡喃并[2,3-c]喹啉作为有前途的分子,因其有趣的生物特性而受到更多关注。本综述介绍了过去 20 年来催化合成前两种候选化合物的情况。多组分反应(MCRs)是一种合成路线,它能以一锅步骤的程序从三个或更多反应物生成单一产物。我们在此报告了利用 MCR 顺序合成目标化合物的催化优势。我们还讨论了机理,并解释了所选催化剂在目标分子选择性方面的作用。最后,这篇最新综述重点介绍了这些分子作为抗癌、抗菌、抗糖尿病、抗炎、抗老年痴呆和抗结核药物的生物学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Catalytic Syntheses of Pyrano[3,2-C]Quinolone and -Quinoline Derivatives and their Potential Therapeutic Agents
: Pyrano[3,2-c]quinolone and pyrano[2,3-c]quinoline, as promising molecules, have garnered more attention due to their interesting biological properties. This review dealt with the catalytic synthesis of the former candidates in the last 20 years. Multi-component reactions (MCRs) are synthetic routes that produce a single product from three or more reactants in a one-pot step procedure. We herein reported on the advantages of catalysis in synthesizing the target compounds using the MCR sequence. We also discussed the mechanism and explained the chosen catalyst's utility in the target molecules' selectivity. Finally, this recent review focuses on the biological applications of these molecules as anticancer, antimicrobial activities, anti-diabetic, antiinflammatory, anti-Alzheimer, and antitubercular agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Organic Chemistry
Current Organic Chemistry 化学-有机化学
CiteScore
3.70
自引率
7.70%
发文量
76
审稿时长
1 months
期刊介绍: Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.
期刊最新文献
Di-tert-butyl Peroxide (DTBP)-Promoted Heterocyclic Ring Construction A New Route for the Synthesis of Trichloromethyl-1H-Benzo[d]imidazole and (1,2,3- Triazol)-1H-Benzo[d]imidazole Derivatives via Copper-Catalyzed N-Arylation and Huisgen Reactions Recent Advance in the Reductive Heck Cyclization for the Formation of Five to Nine Member Rings Catalytic Syntheses of Pyrano[3,2-C]Quinolone and -Quinoline Derivatives and their Potential Therapeutic Agents Recent Advances in the Synthesis and Applications of Partially Protected N-Glycosylamines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1