按主题划分的 Telegram 群组探索

Alessandro Perlo, Giordano Paoletti, Nikhil Jha, Luca Vassio, Jussara Almeida, Marco Mellia
{"title":"按主题划分的 Telegram 群组探索","authors":"Alessandro Perlo, Giordano Paoletti, Nikhil Jha, Luca Vassio, Jussara Almeida, Marco Mellia","doi":"arxiv-2409.02525","DOIUrl":null,"url":null,"abstract":"Although currently one of the most popular instant messaging apps worldwide,\nTelegram has been largely understudied in the past years. In this paper, we aim\nto address this gap by presenting an analysis of publicly accessible groups\ncovering discussions encompassing different topics, as diverse as Education,\nErotic, Politics, and Cryptocurrencies. We engineer and offer an open-source\ntool to automate the collection of messages from Telegram groups, a\nnon-straightforward problem. We use it to collect more than 50 million messages\nfrom 669 groups. Here, we present a first-of-its-kind, per-topic analysis,\ncontrasting the characteristics of the messages sent on the platform from\ndifferent angles -- the language, the presence of bots, the type and volume of\nshared media content. Our results confirm some anecdotal evidence, e.g., clues\nthat Telegram is used to share possibly illicit content, and unveil some\nunexpected findings, e.g., the different sharing patterns of video and stickers\nin groups of different topics. While preliminary, we hope that our work paves\nthe road for several avenues of future research on the understudied Telegram\nplatform.","PeriodicalId":501032,"journal":{"name":"arXiv - CS - Social and Information Networks","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Topic-wise Exploration of the Telegram Group-verse\",\"authors\":\"Alessandro Perlo, Giordano Paoletti, Nikhil Jha, Luca Vassio, Jussara Almeida, Marco Mellia\",\"doi\":\"arxiv-2409.02525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although currently one of the most popular instant messaging apps worldwide,\\nTelegram has been largely understudied in the past years. In this paper, we aim\\nto address this gap by presenting an analysis of publicly accessible groups\\ncovering discussions encompassing different topics, as diverse as Education,\\nErotic, Politics, and Cryptocurrencies. We engineer and offer an open-source\\ntool to automate the collection of messages from Telegram groups, a\\nnon-straightforward problem. We use it to collect more than 50 million messages\\nfrom 669 groups. Here, we present a first-of-its-kind, per-topic analysis,\\ncontrasting the characteristics of the messages sent on the platform from\\ndifferent angles -- the language, the presence of bots, the type and volume of\\nshared media content. Our results confirm some anecdotal evidence, e.g., clues\\nthat Telegram is used to share possibly illicit content, and unveil some\\nunexpected findings, e.g., the different sharing patterns of video and stickers\\nin groups of different topics. While preliminary, we hope that our work paves\\nthe road for several avenues of future research on the understudied Telegram\\nplatform.\",\"PeriodicalId\":501032,\"journal\":{\"name\":\"arXiv - CS - Social and Information Networks\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Social and Information Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Social and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管 Telegram 目前是全球最流行的即时通讯应用程序之一,但在过去几年中,人们对它的研究却很少。在本文中,我们旨在通过分析可公开访问的群组来填补这一空白,这些群组涵盖了教育、情色、政治和加密货币等不同主题的讨论。我们设计并提供了一个开源工具,用于自动收集 Telegram 群组中的消息,这不是一个简单的问题。我们用它从 669 个群组中收集了 5000 多万条信息。在此,我们首次按主题进行分析,从语言、机器人的存在、共享媒体内容的类型和数量等不同角度对比了平台上发送的消息的特征。我们的研究结果证实了一些轶事证据,例如 Telegram 被用于分享可能是非法内容的线索,同时也揭示了一些意想不到的发现,例如在不同主题的群组中视频和贴纸的不同分享模式。虽然我们的研究是初步的,但我们希望我们的工作能为今后对研究不足的 Telegram 平台的研究铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Topic-wise Exploration of the Telegram Group-verse
Although currently one of the most popular instant messaging apps worldwide, Telegram has been largely understudied in the past years. In this paper, we aim to address this gap by presenting an analysis of publicly accessible groups covering discussions encompassing different topics, as diverse as Education, Erotic, Politics, and Cryptocurrencies. We engineer and offer an open-source tool to automate the collection of messages from Telegram groups, a non-straightforward problem. We use it to collect more than 50 million messages from 669 groups. Here, we present a first-of-its-kind, per-topic analysis, contrasting the characteristics of the messages sent on the platform from different angles -- the language, the presence of bots, the type and volume of shared media content. Our results confirm some anecdotal evidence, e.g., clues that Telegram is used to share possibly illicit content, and unveil some unexpected findings, e.g., the different sharing patterns of video and stickers in groups of different topics. While preliminary, we hope that our work paves the road for several avenues of future research on the understudied Telegram platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
My Views Do Not Reflect Those of My Employer: Differences in Behavior of Organizations' Official and Personal Social Media Accounts A novel DFS/BFS approach towards link prediction Community Shaping in the Digital Age: A Temporal Fusion Framework for Analyzing Discourse Fragmentation in Online Social Networks Skill matching at scale: freelancer-project alignment for efficient multilingual candidate retrieval "It Might be Technically Impressive, But It's Practically Useless to Us": Practices, Challenges, and Opportunities for Cross-Functional Collaboration around AI within the News Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1