通过条件去噪扩散模型估算台风卫星数字图像中的大气变量

Zhangyue Ling, Pritthijit Nath, César Quilodrán-Casas
{"title":"通过条件去噪扩散模型估算台风卫星数字图像中的大气变量","authors":"Zhangyue Ling, Pritthijit Nath, César Quilodrán-Casas","doi":"arxiv-2409.07961","DOIUrl":null,"url":null,"abstract":"This study explores the application of diffusion models in the field of\ntyphoons, predicting multiple ERA5 meteorological variables simultaneously from\nDigital Typhoon satellite images. The focus of this study is taken to be\nTaiwan, an area very vulnerable to typhoons. By comparing the performance of\nConditional Denoising Diffusion Probability Model (CDDPM) with Convolutional\nNeural Networks (CNN) and Squeeze-and-Excitation Networks (SENet), results\nsuggest that the CDDPM performs best in generating accurate and realistic\nmeteorological data. Specifically, CDDPM achieved a PSNR of 32.807, which is\napproximately 7.9% higher than CNN and 5.5% higher than SENet. Furthermore,\nCDDPM recorded an RMSE of 0.032, showing a 11.1% improvement over CNN and 8.6%\nimprovement over SENet. A key application of this research can be for\nimputation purposes in missing meteorological datasets and generate additional\nhigh-quality meteorological data using satellite images. It is hoped that the\nresults of this analysis will enable more robust and detailed forecasting,\nreducing the impact of severe weather events on vulnerable regions. Code\naccessible at https://github.com/TammyLing/Typhoon-forecasting.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating atmospheric variables from Digital Typhoon Satellite Images via Conditional Denoising Diffusion Models\",\"authors\":\"Zhangyue Ling, Pritthijit Nath, César Quilodrán-Casas\",\"doi\":\"arxiv-2409.07961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the application of diffusion models in the field of\\ntyphoons, predicting multiple ERA5 meteorological variables simultaneously from\\nDigital Typhoon satellite images. The focus of this study is taken to be\\nTaiwan, an area very vulnerable to typhoons. By comparing the performance of\\nConditional Denoising Diffusion Probability Model (CDDPM) with Convolutional\\nNeural Networks (CNN) and Squeeze-and-Excitation Networks (SENet), results\\nsuggest that the CDDPM performs best in generating accurate and realistic\\nmeteorological data. Specifically, CDDPM achieved a PSNR of 32.807, which is\\napproximately 7.9% higher than CNN and 5.5% higher than SENet. Furthermore,\\nCDDPM recorded an RMSE of 0.032, showing a 11.1% improvement over CNN and 8.6%\\nimprovement over SENet. A key application of this research can be for\\nimputation purposes in missing meteorological datasets and generate additional\\nhigh-quality meteorological data using satellite images. It is hoped that the\\nresults of this analysis will enable more robust and detailed forecasting,\\nreducing the impact of severe weather events on vulnerable regions. Code\\naccessible at https://github.com/TammyLing/Typhoon-forecasting.\",\"PeriodicalId\":501166,\"journal\":{\"name\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了扩散模式在台风领域的应用,通过数字台风卫星图像同时预测多个ERA5气象变量。本研究的重点是极易受台风影响的台湾地区。通过比较条件去噪扩散概率模型(CDDPM)与卷积神经网络(CNN)和挤压激励网络(SENet)的性能,结果表明 CDDPM 在生成准确、真实的气象数据方面表现最佳。具体来说,CDDPM 的 PSNR 达到 32.807,比 CNN 高出约 7.9%,比 SENet 高出 5.5%。此外,CDDPM 的 RMSE 为 0.032,比 CNN 提高了 11.1%,比 SENet 提高了 8.6%。这项研究的一个重要应用是用于缺失气象数据集的输入,并利用卫星图像生成额外的高质量气象数据。希望这项分析的结果能使预报更准确、更详细,从而减少恶劣天气事件对脆弱地区的影响。代码见 https://github.com/TammyLing/Typhoon-forecasting。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating atmospheric variables from Digital Typhoon Satellite Images via Conditional Denoising Diffusion Models
This study explores the application of diffusion models in the field of typhoons, predicting multiple ERA5 meteorological variables simultaneously from Digital Typhoon satellite images. The focus of this study is taken to be Taiwan, an area very vulnerable to typhoons. By comparing the performance of Conditional Denoising Diffusion Probability Model (CDDPM) with Convolutional Neural Networks (CNN) and Squeeze-and-Excitation Networks (SENet), results suggest that the CDDPM performs best in generating accurate and realistic meteorological data. Specifically, CDDPM achieved a PSNR of 32.807, which is approximately 7.9% higher than CNN and 5.5% higher than SENet. Furthermore, CDDPM recorded an RMSE of 0.032, showing a 11.1% improvement over CNN and 8.6% improvement over SENet. A key application of this research can be for imputation purposes in missing meteorological datasets and generate additional high-quality meteorological data using satellite images. It is hoped that the results of this analysis will enable more robust and detailed forecasting, reducing the impact of severe weather events on vulnerable regions. Code accessible at https://github.com/TammyLing/Typhoon-forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1