利用激光雷达得出的城市形态特征进行高分辨率气温降尺度的机器学习框架

Fatemeh Chajaei, Hossein Bagheri
{"title":"利用激光雷达得出的城市形态特征进行高分辨率气温降尺度的机器学习框架","authors":"Fatemeh Chajaei, Hossein Bagheri","doi":"arxiv-2409.02120","DOIUrl":null,"url":null,"abstract":"Climate models lack the necessary resolution for urban climate studies,\nrequiring computationally intensive processes to estimate high resolution air\ntemperatures. In contrast, Data-driven approaches offer faster and more\naccurate air temperature downscaling. This study presents a data-driven\nframework for downscaling air temperature using publicly available outputs from\nurban climate models, specifically datasets generated by UrbClim. The proposed\nframework utilized morphological features extracted from LiDAR data. To extract\nurban morphological features, first a three-dimensional building model was\ncreated using LiDAR data and deep learning models. Then, these features were\nintegrated with meteorological parameters such as wind, humidity, etc., to\ndownscale air temperature using machine learning algorithms. The results\ndemonstrated that the developed framework effectively extracted urban\nmorphological features from LiDAR data. Deep learning algorithms played a\ncrucial role in generating three-dimensional models for extracting the\naforementioned features. Also, the evaluation of air temperature downscaling\nresults using various machine learning models indicated that the LightGBM model\nhad the best performance with an RMSE of 0.352{\\deg}K and MAE of 0.215{\\deg}K.\nFurthermore, the examination of final air temperature maps derived from\ndownscaling showed that the developed framework successfully estimated air\ntemperatures at higher resolutions, enabling the identification of local air\ntemperature patterns at street level. The corresponding source codes are\navailable on GitHub:\nhttps://github.com/FatemehCh97/Air-Temperature-Downscaling.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Framework for High-Resolution Air Temperature Downscaling Using LiDAR-Derived Urban Morphological Features\",\"authors\":\"Fatemeh Chajaei, Hossein Bagheri\",\"doi\":\"arxiv-2409.02120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate models lack the necessary resolution for urban climate studies,\\nrequiring computationally intensive processes to estimate high resolution air\\ntemperatures. In contrast, Data-driven approaches offer faster and more\\naccurate air temperature downscaling. This study presents a data-driven\\nframework for downscaling air temperature using publicly available outputs from\\nurban climate models, specifically datasets generated by UrbClim. The proposed\\nframework utilized morphological features extracted from LiDAR data. To extract\\nurban morphological features, first a three-dimensional building model was\\ncreated using LiDAR data and deep learning models. Then, these features were\\nintegrated with meteorological parameters such as wind, humidity, etc., to\\ndownscale air temperature using machine learning algorithms. The results\\ndemonstrated that the developed framework effectively extracted urban\\nmorphological features from LiDAR data. Deep learning algorithms played a\\ncrucial role in generating three-dimensional models for extracting the\\naforementioned features. Also, the evaluation of air temperature downscaling\\nresults using various machine learning models indicated that the LightGBM model\\nhad the best performance with an RMSE of 0.352{\\\\deg}K and MAE of 0.215{\\\\deg}K.\\nFurthermore, the examination of final air temperature maps derived from\\ndownscaling showed that the developed framework successfully estimated air\\ntemperatures at higher resolutions, enabling the identification of local air\\ntemperature patterns at street level. The corresponding source codes are\\navailable on GitHub:\\nhttps://github.com/FatemehCh97/Air-Temperature-Downscaling.\",\"PeriodicalId\":501166,\"journal\":{\"name\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气候模式缺乏城市气候研究所需的分辨率,需要密集的计算过程来估算高分辨率气温。相比之下,数据驱动方法可提供更快、更准确的气温降尺度。本研究提出了一个数据驱动框架,利用城市气候模式的公开输出(特别是 UrbClim 生成的数据集)进行气温降尺度。所提出的框架利用了从激光雷达数据中提取的形态特征。为了提取城市形态特征,首先使用激光雷达数据和深度学习模型创建了一个三维建筑模型。然后,利用机器学习算法将这些特征与气象参数(如风、湿度等)进行整合,以降低空气温度。结果表明,所开发的框架能有效地从激光雷达数据中提取城市形态特征。深度学习算法在生成用于提取上述特征的三维模型方面发挥了重要作用。此外,使用各种机器学习模型对气温降尺度结果进行的评估表明,LightGBM 模型性能最佳,RMSE 为 0.352{/deg}K,MAE 为 0.215{/deg}K。相应的源代码可在 GitHub 上获取:https://github.com/FatemehCh97/Air-Temperature-Downscaling。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Framework for High-Resolution Air Temperature Downscaling Using LiDAR-Derived Urban Morphological Features
Climate models lack the necessary resolution for urban climate studies, requiring computationally intensive processes to estimate high resolution air temperatures. In contrast, Data-driven approaches offer faster and more accurate air temperature downscaling. This study presents a data-driven framework for downscaling air temperature using publicly available outputs from urban climate models, specifically datasets generated by UrbClim. The proposed framework utilized morphological features extracted from LiDAR data. To extract urban morphological features, first a three-dimensional building model was created using LiDAR data and deep learning models. Then, these features were integrated with meteorological parameters such as wind, humidity, etc., to downscale air temperature using machine learning algorithms. The results demonstrated that the developed framework effectively extracted urban morphological features from LiDAR data. Deep learning algorithms played a crucial role in generating three-dimensional models for extracting the aforementioned features. Also, the evaluation of air temperature downscaling results using various machine learning models indicated that the LightGBM model had the best performance with an RMSE of 0.352{\deg}K and MAE of 0.215{\deg}K. Furthermore, the examination of final air temperature maps derived from downscaling showed that the developed framework successfully estimated air temperatures at higher resolutions, enabling the identification of local air temperature patterns at street level. The corresponding source codes are available on GitHub: https://github.com/FatemehCh97/Air-Temperature-Downscaling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1