人工智能驱动的天气预报可将极端事件归因于人为气候变化

Bernat Jiménez-Esteve, David Barriopedro, Juan Emmanuel Johnson, Ricardo Garcia-Herrera
{"title":"人工智能驱动的天气预报可将极端事件归因于人为气候变化","authors":"Bernat Jiménez-Esteve, David Barriopedro, Juan Emmanuel Johnson, Ricardo Garcia-Herrera","doi":"arxiv-2408.16433","DOIUrl":null,"url":null,"abstract":"Anthropogenic climate change (ACC) is altering the frequency and intensity of\nextreme weather events. Attributing individual extreme events (EEs) to ACC is\nbecoming crucial to assess the risks of climate change. Traditional attribution\nmethods often suffer from a selection bias, are computationally demanding, and\nprovide answers after the EE occurs. This study presents a ground-breaking\nhybrid attribution method by combining physics-based ACC estimates from global\nclimate models with deep-learning weather forecasts. This hybrid approach\ncircumvents the framing choices and accelerates the attribution process, paving\nthe way for operational anticipated global forecast-based attribution. We apply\nthis methodology to three distinct high-impact weather EEs. Despite some\nlimitations in predictability, the method uncovers ACC fingerprints in the\nforecasted fields of EEs. Specifically, forecasts successfully anticipate that\nACC exacerbated the 2018 Iberian heatwave, deepened hurricane Florence, and\nintensified the wind and precipitable water of the explosive cyclone Ciar\\'an.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-driven weather forecasts enable anticipated attribution of extreme events to human-made climate change\",\"authors\":\"Bernat Jiménez-Esteve, David Barriopedro, Juan Emmanuel Johnson, Ricardo Garcia-Herrera\",\"doi\":\"arxiv-2408.16433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anthropogenic climate change (ACC) is altering the frequency and intensity of\\nextreme weather events. Attributing individual extreme events (EEs) to ACC is\\nbecoming crucial to assess the risks of climate change. Traditional attribution\\nmethods often suffer from a selection bias, are computationally demanding, and\\nprovide answers after the EE occurs. This study presents a ground-breaking\\nhybrid attribution method by combining physics-based ACC estimates from global\\nclimate models with deep-learning weather forecasts. This hybrid approach\\ncircumvents the framing choices and accelerates the attribution process, paving\\nthe way for operational anticipated global forecast-based attribution. We apply\\nthis methodology to three distinct high-impact weather EEs. Despite some\\nlimitations in predictability, the method uncovers ACC fingerprints in the\\nforecasted fields of EEs. Specifically, forecasts successfully anticipate that\\nACC exacerbated the 2018 Iberian heatwave, deepened hurricane Florence, and\\nintensified the wind and precipitable water of the explosive cyclone Ciar\\\\'an.\",\"PeriodicalId\":501166,\"journal\":{\"name\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人为气候变化(ACC)正在改变极端天气事件的频率和强度。将个别极端事件(EEs)归因于 ACC 正成为评估气候变化风险的关键。传统的归因方法往往存在选择偏差,计算量大,而且是在 EE 发生后才提供答案。本研究提出了一种开创性的混合归因方法,将全球气候模型中基于物理学的 ACC 估值与深度学习天气预报相结合。这种混合方法避免了框架选择,加快了归因过程,为基于全球预测的业务预期归因铺平了道路。我们将这一方法应用于三种不同的高影响天气 EE。尽管在可预测性方面存在一些限制,但该方法在预测的 EEs 领域中发现了 ACC 指纹。具体来说,预测成功地预测到气候变化加剧了 2018 年伊比利亚热浪,加深了佛罗伦萨飓风,并增强了爆炸性气旋 Ciar\'an 的风力和可降水量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI-driven weather forecasts enable anticipated attribution of extreme events to human-made climate change
Anthropogenic climate change (ACC) is altering the frequency and intensity of extreme weather events. Attributing individual extreme events (EEs) to ACC is becoming crucial to assess the risks of climate change. Traditional attribution methods often suffer from a selection bias, are computationally demanding, and provide answers after the EE occurs. This study presents a ground-breaking hybrid attribution method by combining physics-based ACC estimates from global climate models with deep-learning weather forecasts. This hybrid approach circumvents the framing choices and accelerates the attribution process, paving the way for operational anticipated global forecast-based attribution. We apply this methodology to three distinct high-impact weather EEs. Despite some limitations in predictability, the method uncovers ACC fingerprints in the forecasted fields of EEs. Specifically, forecasts successfully anticipate that ACC exacerbated the 2018 Iberian heatwave, deepened hurricane Florence, and intensified the wind and precipitable water of the explosive cyclone Ciar\'an.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1