RAIN:改进数值天气和气候模型的强化算法

Pritthijit Nath, Henry Moss, Emily Shuckburgh, Mark Webb
{"title":"RAIN:改进数值天气和气候模型的强化算法","authors":"Pritthijit Nath, Henry Moss, Emily Shuckburgh, Mark Webb","doi":"arxiv-2408.16118","DOIUrl":null,"url":null,"abstract":"This study explores integrating reinforcement learning (RL) with idealised\nclimate models to address key parameterisation challenges in climate science.\nCurrent climate models rely on complex mathematical parameterisations to\nrepresent sub-grid scale processes, which can introduce substantial\nuncertainties. RL offers capabilities to enhance these parameterisation\nschemes, including direct interaction, handling sparse or delayed feedback,\ncontinuous online learning, and long-term optimisation. We evaluate the\nperformance of eight RL algorithms on two idealised environments: one for\ntemperature bias correction, another for radiative-convective equilibrium (RCE)\nimitating real-world computational constraints. Results show different RL\napproaches excel in different climate scenarios with exploration algorithms\nperforming better in bias correction, while exploitation algorithms proving\nmore effective for RCE. These findings support the potential of RL-based\nparameterisation schemes to be integrated into global climate models, improving\naccuracy and efficiency in capturing complex climate dynamics. Overall, this\nwork represents an important first step towards leveraging RL to enhance\nclimate model accuracy, critical for improving climate understanding and\npredictions. Code accessible at https://github.com/p3jitnath/climate-rl.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RAIN: Reinforcement Algorithms for Improving Numerical Weather and Climate Models\",\"authors\":\"Pritthijit Nath, Henry Moss, Emily Shuckburgh, Mark Webb\",\"doi\":\"arxiv-2408.16118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores integrating reinforcement learning (RL) with idealised\\nclimate models to address key parameterisation challenges in climate science.\\nCurrent climate models rely on complex mathematical parameterisations to\\nrepresent sub-grid scale processes, which can introduce substantial\\nuncertainties. RL offers capabilities to enhance these parameterisation\\nschemes, including direct interaction, handling sparse or delayed feedback,\\ncontinuous online learning, and long-term optimisation. We evaluate the\\nperformance of eight RL algorithms on two idealised environments: one for\\ntemperature bias correction, another for radiative-convective equilibrium (RCE)\\nimitating real-world computational constraints. Results show different RL\\napproaches excel in different climate scenarios with exploration algorithms\\nperforming better in bias correction, while exploitation algorithms proving\\nmore effective for RCE. These findings support the potential of RL-based\\nparameterisation schemes to be integrated into global climate models, improving\\naccuracy and efficiency in capturing complex climate dynamics. Overall, this\\nwork represents an important first step towards leveraging RL to enhance\\nclimate model accuracy, critical for improving climate understanding and\\npredictions. Code accessible at https://github.com/p3jitnath/climate-rl.\",\"PeriodicalId\":501166,\"journal\":{\"name\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了如何将强化学习(RL)与理想化气候模型相结合,以解决气候科学中的关键参数化难题。当前的气候模型依赖于复杂的数学参数化来表示子网格尺度的过程,这可能会带来很大的不确定性。RL 具有增强这些参数化方案的能力,包括直接交互、处理稀疏或延迟反馈、连续在线学习和长期优化。我们在两个理想化环境中评估了八种 RL 算法的性能:一个用于温度偏差校正,另一个用于模拟现实世界计算约束的辐射对流平衡(RCE)。结果表明,不同的 RL 方法在不同的气候场景中表现出色,探索算法在偏差校正中表现更好,而利用算法在 RCE 中证明更有效。这些发现支持了将基于 RL 的参数化方案集成到全球气候模式中的潜力,提高了捕捉复杂气候动态的准确性和效率。总之,这项工作是利用 RL 提高气候模式准确性的重要第一步,对提高气候理解和预测至关重要。代码见 https://github.com/p3jitnath/climate-rl。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RAIN: Reinforcement Algorithms for Improving Numerical Weather and Climate Models
This study explores integrating reinforcement learning (RL) with idealised climate models to address key parameterisation challenges in climate science. Current climate models rely on complex mathematical parameterisations to represent sub-grid scale processes, which can introduce substantial uncertainties. RL offers capabilities to enhance these parameterisation schemes, including direct interaction, handling sparse or delayed feedback, continuous online learning, and long-term optimisation. We evaluate the performance of eight RL algorithms on two idealised environments: one for temperature bias correction, another for radiative-convective equilibrium (RCE) imitating real-world computational constraints. Results show different RL approaches excel in different climate scenarios with exploration algorithms performing better in bias correction, while exploitation algorithms proving more effective for RCE. These findings support the potential of RL-based parameterisation schemes to be integrated into global climate models, improving accuracy and efficiency in capturing complex climate dynamics. Overall, this work represents an important first step towards leveraging RL to enhance climate model accuracy, critical for improving climate understanding and predictions. Code accessible at https://github.com/p3jitnath/climate-rl.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1