基于生成扩散模型的 2000 年以来黑潮扩展区观测海面高度降尺度研究

Qiuchang Han, Xingliang Jiang, Yang Zhao, Xudong Wang, Zhijin Li, Renhe Zhang
{"title":"基于生成扩散模型的 2000 年以来黑潮扩展区观测海面高度降尺度研究","authors":"Qiuchang Han, Xingliang Jiang, Yang Zhao, Xudong Wang, Zhijin Li, Renhe Zhang","doi":"arxiv-2408.12632","DOIUrl":null,"url":null,"abstract":"Satellite altimetry has been widely utilized to monitor global sea surface\ndynamics, enabling investigation of upper ocean variability from basin-scale to\nlocalized eddy ranges. However, the sparse spatial resolution of observational\naltimetry limits our understanding of oceanic submesoscale variability,\nprevalent at horizontal scales below 0.25o resolution. Here, we introduce a\nstate-of-the-art generative diffusion model to train high-resolution sea\nsurface height (SSH) reanalysis data and demonstrate its advantage in\nobservational SSH downscaling over the eddy-rich Kuroshio Extension region. The\ndiffusion-based model effectively downscales raw satellite-interpolated data\nfrom 0.25o resolution to 1/16o, corresponding to approximately 12-km\nwavelength. This model outperforms other high-resolution reanalysis datasets\nand neural network-based methods. Also, it successfully reproduces the spatial\npatterns and power spectra of satellite along-track observations. Our\ndiffusion-based results indicate that eddy kinetic energy at horizontal scales\nless than 250 km has intensified significantly since 2004 in the Kuroshio\nExtension region. These findings underscore the great potential of deep\nlearning in reconstructing satellite altimetry and enhancing our understanding\nof ocean dynamics at eddy scales.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"159 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative Diffusion Model-based Downscaling of Observed Sea Surface Height over Kuroshio Extension since 2000\",\"authors\":\"Qiuchang Han, Xingliang Jiang, Yang Zhao, Xudong Wang, Zhijin Li, Renhe Zhang\",\"doi\":\"arxiv-2408.12632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite altimetry has been widely utilized to monitor global sea surface\\ndynamics, enabling investigation of upper ocean variability from basin-scale to\\nlocalized eddy ranges. However, the sparse spatial resolution of observational\\naltimetry limits our understanding of oceanic submesoscale variability,\\nprevalent at horizontal scales below 0.25o resolution. Here, we introduce a\\nstate-of-the-art generative diffusion model to train high-resolution sea\\nsurface height (SSH) reanalysis data and demonstrate its advantage in\\nobservational SSH downscaling over the eddy-rich Kuroshio Extension region. The\\ndiffusion-based model effectively downscales raw satellite-interpolated data\\nfrom 0.25o resolution to 1/16o, corresponding to approximately 12-km\\nwavelength. This model outperforms other high-resolution reanalysis datasets\\nand neural network-based methods. Also, it successfully reproduces the spatial\\npatterns and power spectra of satellite along-track observations. Our\\ndiffusion-based results indicate that eddy kinetic energy at horizontal scales\\nless than 250 km has intensified significantly since 2004 in the Kuroshio\\nExtension region. These findings underscore the great potential of deep\\nlearning in reconstructing satellite altimetry and enhancing our understanding\\nof ocean dynamics at eddy scales.\",\"PeriodicalId\":501166,\"journal\":{\"name\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"volume\":\"159 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卫星测高法已被广泛用于监测全球海面动力学,从而能够调查从海盆尺度到局部涡旋范围的上层海洋变化。然而,观测测高仪稀疏的空间分辨率限制了我们对海洋次中尺度变异性的了解,这种变异性主要发生在分辨率低于 0.25o 的水平尺度上。在这里,我们引入了一个最先进的生成扩散模式来训练高分辨率海面高度(SSH)再分析数据,并展示了它在富含涡的黑潮延伸区观测 SSH 降尺度中的优势。基于扩散的模式有效地将原始卫星插值数据从 0.25o 分辨率降尺度到 1/16o,相当于约 12 公里波长。该模式优于其他高分辨率再分析数据集和基于神经网络的方法。此外,它还成功地再现了卫星沿轨观测的空间格局和功率谱。我们基于扩散的研究结果表明,自 2004 年以来,黑潮延伸区水平尺度小于 250 公里的涡动能显著增强。这些发现强调了深度学习在重建卫星测高和增强我们对涡旋尺度海洋动力学的理解方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generative Diffusion Model-based Downscaling of Observed Sea Surface Height over Kuroshio Extension since 2000
Satellite altimetry has been widely utilized to monitor global sea surface dynamics, enabling investigation of upper ocean variability from basin-scale to localized eddy ranges. However, the sparse spatial resolution of observational altimetry limits our understanding of oceanic submesoscale variability, prevalent at horizontal scales below 0.25o resolution. Here, we introduce a state-of-the-art generative diffusion model to train high-resolution sea surface height (SSH) reanalysis data and demonstrate its advantage in observational SSH downscaling over the eddy-rich Kuroshio Extension region. The diffusion-based model effectively downscales raw satellite-interpolated data from 0.25o resolution to 1/16o, corresponding to approximately 12-km wavelength. This model outperforms other high-resolution reanalysis datasets and neural network-based methods. Also, it successfully reproduces the spatial patterns and power spectra of satellite along-track observations. Our diffusion-based results indicate that eddy kinetic energy at horizontal scales less than 250 km has intensified significantly since 2004 in the Kuroshio Extension region. These findings underscore the great potential of deep learning in reconstructing satellite altimetry and enhancing our understanding of ocean dynamics at eddy scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1