利用生成扩散建模进行公里级对流模型模拟

Jaideep Pathak, Yair Cohen, Piyush Garg, Peter Harrington, Noah Brenowitz, Dale Durran, Morteza Mardani, Arash Vahdat, Shaoming Xu, Karthik Kashinath, Michael Pritchard
{"title":"利用生成扩散建模进行公里级对流模型模拟","authors":"Jaideep Pathak, Yair Cohen, Piyush Garg, Peter Harrington, Noah Brenowitz, Dale Durran, Morteza Mardani, Arash Vahdat, Shaoming Xu, Karthik Kashinath, Michael Pritchard","doi":"arxiv-2408.10958","DOIUrl":null,"url":null,"abstract":"Storm-scale convection-allowing models (CAMs) are an important tool for\npredicting the evolution of thunderstorms and mesoscale convective systems that\nresult in damaging extreme weather. By explicitly resolving convective dynamics\nwithin the atmosphere they afford meteorologists the nuance needed to provide\noutlook on hazard. Deep learning models have thus far not proven skilful at\nkm-scale atmospheric simulation, despite being competitive at coarser\nresolution with state-of-the-art global, medium-range weather forecasting. We\npresent a generative diffusion model called StormCast, which emulates the\nhigh-resolution rapid refresh (HRRR) model-NOAA's state-of-the-art 3km\noperational CAM. StormCast autoregressively predicts 99 state variables at km\nscale using a 1-hour time step, with dense vertical resolution in the\natmospheric boundary layer, conditioned on 26 synoptic variables. We present\nevidence of successfully learnt km-scale dynamics including competitive 1-6\nhour forecast skill for composite radar reflectivity alongside physically\nrealistic convective cluster evolution, moist updrafts, and cold pool\nmorphology. StormCast predictions maintain realistic power spectra for multiple\npredicted variables across multi-hour forecasts. Together, these results\nestablish the potential for autoregressive ML to emulate CAMs -- opening up new\nkm-scale frontiers for regional ML weather prediction and future climate hazard\ndynamical downscaling.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kilometer-Scale Convection Allowing Model Emulation using Generative Diffusion Modeling\",\"authors\":\"Jaideep Pathak, Yair Cohen, Piyush Garg, Peter Harrington, Noah Brenowitz, Dale Durran, Morteza Mardani, Arash Vahdat, Shaoming Xu, Karthik Kashinath, Michael Pritchard\",\"doi\":\"arxiv-2408.10958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Storm-scale convection-allowing models (CAMs) are an important tool for\\npredicting the evolution of thunderstorms and mesoscale convective systems that\\nresult in damaging extreme weather. By explicitly resolving convective dynamics\\nwithin the atmosphere they afford meteorologists the nuance needed to provide\\noutlook on hazard. Deep learning models have thus far not proven skilful at\\nkm-scale atmospheric simulation, despite being competitive at coarser\\nresolution with state-of-the-art global, medium-range weather forecasting. We\\npresent a generative diffusion model called StormCast, which emulates the\\nhigh-resolution rapid refresh (HRRR) model-NOAA's state-of-the-art 3km\\noperational CAM. StormCast autoregressively predicts 99 state variables at km\\nscale using a 1-hour time step, with dense vertical resolution in the\\natmospheric boundary layer, conditioned on 26 synoptic variables. We present\\nevidence of successfully learnt km-scale dynamics including competitive 1-6\\nhour forecast skill for composite radar reflectivity alongside physically\\nrealistic convective cluster evolution, moist updrafts, and cold pool\\nmorphology. StormCast predictions maintain realistic power spectra for multiple\\npredicted variables across multi-hour forecasts. Together, these results\\nestablish the potential for autoregressive ML to emulate CAMs -- opening up new\\nkm-scale frontiers for regional ML weather prediction and future climate hazard\\ndynamical downscaling.\",\"PeriodicalId\":501166,\"journal\":{\"name\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

风暴尺度对流允许模式(CAMs)是预测雷暴和中尺度对流系统演变的重要工具,而雷暴和中尺度对流系统会导致破坏性的极端天气。通过明确解析大气层中的对流动态,它们为气象学家提供了所需的细微差别,以展望灾害。迄今为止,尽管深度学习模型在更高分辨率下与最先进的全球中程天气预报相比具有竞争力,但在千米尺度的大气模拟方面尚未被证明是娴熟的。我们提出了一个名为 StormCast 的生成扩散模型,它模仿了高分辨率快速刷新(HRRR)模型--美国国家航空和宇宙航行局最先进的 3km 运行 CAM。StormCast 以 26 个同步变量为条件,使用 1 小时时间步长在千米尺度上对 99 个状态变量进行自动回归预测,并对大气边界层进行高密度垂直分辨率预测。我们展示了成功学习千米尺度动态的证据,包括具有竞争力的 1-6 小时综合雷达反射率预报技能,以及物理上逼真的对流团演变、湿润上升气流和冷池形态。StormCast 预测在多小时预报中保持了多个预测变量的真实功率谱。这些结果共同证明了自回归 ML 模拟 CAM 的潜力,为区域 ML 天气预报和未来气候灾害动态降尺度开辟了新的公里尺度领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kilometer-Scale Convection Allowing Model Emulation using Generative Diffusion Modeling
Storm-scale convection-allowing models (CAMs) are an important tool for predicting the evolution of thunderstorms and mesoscale convective systems that result in damaging extreme weather. By explicitly resolving convective dynamics within the atmosphere they afford meteorologists the nuance needed to provide outlook on hazard. Deep learning models have thus far not proven skilful at km-scale atmospheric simulation, despite being competitive at coarser resolution with state-of-the-art global, medium-range weather forecasting. We present a generative diffusion model called StormCast, which emulates the high-resolution rapid refresh (HRRR) model-NOAA's state-of-the-art 3km operational CAM. StormCast autoregressively predicts 99 state variables at km scale using a 1-hour time step, with dense vertical resolution in the atmospheric boundary layer, conditioned on 26 synoptic variables. We present evidence of successfully learnt km-scale dynamics including competitive 1-6 hour forecast skill for composite radar reflectivity alongside physically realistic convective cluster evolution, moist updrafts, and cold pool morphology. StormCast predictions maintain realistic power spectra for multiple predicted variables across multi-hour forecasts. Together, these results establish the potential for autoregressive ML to emulate CAMs -- opening up new km-scale frontiers for regional ML weather prediction and future climate hazard dynamical downscaling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1