上海附近海平面上升预测

Yi Zheng
{"title":"上海附近海平面上升预测","authors":"Yi Zheng","doi":"arxiv-2408.06387","DOIUrl":null,"url":null,"abstract":"Firstly, by establishing a prediction model for global sea-level rise and\ncalculating with Maple, it is shown that the global sea-level rise rate in 2009\nis 2.68 mm/a. The height and rate of global sea-level rise will be about 9.11\ncm and 3.22 mm/a in 2020. Based on the study and the actual land subsidence in\nShanghai Lingang New City, the rate of relative sea-level rise near Lingang New\nCity is calculated to be 12.68 mm/a in 2009. Then, through setting up the\nextrapolation prediction model with a linear trend term and a significant tidal\ncycle, the rise rate of average sea-level near Lingang New City was predicted.\nThe result showed it will be 0.33 mm/a in 2020.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Sea Level Rise near Shanghai\",\"authors\":\"Yi Zheng\",\"doi\":\"arxiv-2408.06387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Firstly, by establishing a prediction model for global sea-level rise and\\ncalculating with Maple, it is shown that the global sea-level rise rate in 2009\\nis 2.68 mm/a. The height and rate of global sea-level rise will be about 9.11\\ncm and 3.22 mm/a in 2020. Based on the study and the actual land subsidence in\\nShanghai Lingang New City, the rate of relative sea-level rise near Lingang New\\nCity is calculated to be 12.68 mm/a in 2009. Then, through setting up the\\nextrapolation prediction model with a linear trend term and a significant tidal\\ncycle, the rise rate of average sea-level near Lingang New City was predicted.\\nThe result showed it will be 0.33 mm/a in 2020.\",\"PeriodicalId\":501166,\"journal\":{\"name\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

首先,通过建立全球海平面上升预测模型并利用 Maple 进行计算,得出 2009 年全球海平面上升速率为 2.68 mm/a。到 2020 年,全球海平面上升高度和速率将分别达到约 9.11 厘米和 3.22 毫米/年。根据研究和上海临港新城的实际地面沉降情况,计算出 2009 年临港新城附近的海平面相对上升速率为 12.68 mm/a。然后,通过建立具有线性趋势项和显著潮汐周期的外推法预测模型,对临港新城附近的平均海平面上升速率进行预测,结果表明 2020 年的平均海平面上升速率为 0.33 mm/a。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Sea Level Rise near Shanghai
Firstly, by establishing a prediction model for global sea-level rise and calculating with Maple, it is shown that the global sea-level rise rate in 2009 is 2.68 mm/a. The height and rate of global sea-level rise will be about 9.11 cm and 3.22 mm/a in 2020. Based on the study and the actual land subsidence in Shanghai Lingang New City, the rate of relative sea-level rise near Lingang New City is calculated to be 12.68 mm/a in 2009. Then, through setting up the extrapolation prediction model with a linear trend term and a significant tidal cycle, the rise rate of average sea-level near Lingang New City was predicted. The result showed it will be 0.33 mm/a in 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1