ResGAT:用于分子特性预测的残差图注意网络

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-03 DOI:10.1007/s12293-024-00423-5
Thanh-Hoang Nguyen-Vo, Trang T. T. Do, Binh P. Nguyen
{"title":"ResGAT:用于分子特性预测的残差图注意网络","authors":"Thanh-Hoang Nguyen-Vo, Trang T. T. Do, Binh P. Nguyen","doi":"10.1007/s12293-024-00423-5","DOIUrl":null,"url":null,"abstract":"<p>Molecular property prediction is an important step in the drug discovery pipeline. Numerous computational methods have been developed to predict a wide range of molecular properties. While recent approaches have shown promising results, no single architecture can comprehensively address all tasks, making this area persistently challenging and requiring substantial time and effort. Beyond traditional machine learning and deep learning architectures for regular data, several deep learning architectures have been designed for graph-structured data to overcome the limitations of conventional methods. Utilizing graph-structured data in quantitative structure–activity relationship (QSAR) modeling allows models to effectively extract unique features, especially where connectivity information is crucial. In our study, we developed residual graph attention networks (ResGAT), a deep learning architecture for molecular graph-structured data. This architecture is a combination of graph attention networks and shortcut connections to address both regression and classification problems. It is also customizable to adapt to various dataset sizes, enhancing the learning process based on molecular patterns. When tested multiple times with both random and scaffold sampling strategies on nine benchmark molecular datasets, QSAR models developed using ResGAT demonstrated stability and competitive performance compared to state-of-the-art methods.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ResGAT: Residual Graph Attention Networks for molecular property prediction\",\"authors\":\"Thanh-Hoang Nguyen-Vo, Trang T. T. Do, Binh P. Nguyen\",\"doi\":\"10.1007/s12293-024-00423-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Molecular property prediction is an important step in the drug discovery pipeline. Numerous computational methods have been developed to predict a wide range of molecular properties. While recent approaches have shown promising results, no single architecture can comprehensively address all tasks, making this area persistently challenging and requiring substantial time and effort. Beyond traditional machine learning and deep learning architectures for regular data, several deep learning architectures have been designed for graph-structured data to overcome the limitations of conventional methods. Utilizing graph-structured data in quantitative structure–activity relationship (QSAR) modeling allows models to effectively extract unique features, especially where connectivity information is crucial. In our study, we developed residual graph attention networks (ResGAT), a deep learning architecture for molecular graph-structured data. This architecture is a combination of graph attention networks and shortcut connections to address both regression and classification problems. It is also customizable to adapt to various dataset sizes, enhancing the learning process based on molecular patterns. When tested multiple times with both random and scaffold sampling strategies on nine benchmark molecular datasets, QSAR models developed using ResGAT demonstrated stability and competitive performance compared to state-of-the-art methods.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12293-024-00423-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12293-024-00423-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

分子性质预测是药物发现过程中的一个重要步骤。目前已开发出许多计算方法来预测各种分子性质。虽然最近的方法取得了可喜的成果,但没有一种架构能全面解决所有任务,这使得这一领域始终充满挑战,需要花费大量的时间和精力。除了用于常规数据的传统机器学习和深度学习架构外,还为图结构数据设计了几种深度学习架构,以克服传统方法的局限性。在定量结构-活性关系(QSAR)建模中利用图结构数据可以使模型有效地提取独特的特征,尤其是在连接性信息至关重要的情况下。在我们的研究中,我们开发了残差图注意网络(ResGAT),这是一种针对分子图结构数据的深度学习架构。该架构结合了图注意力网络和捷径连接,可同时解决回归和分类问题。它还可以定制,以适应各种数据集规模,从而增强基于分子模式的学习过程。在九个基准分子数据集上使用随机和支架采样策略进行多次测试后,使用 ResGAT 开发的 QSAR 模型与最先进的方法相比,表现出了稳定性和竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ResGAT: Residual Graph Attention Networks for molecular property prediction

Molecular property prediction is an important step in the drug discovery pipeline. Numerous computational methods have been developed to predict a wide range of molecular properties. While recent approaches have shown promising results, no single architecture can comprehensively address all tasks, making this area persistently challenging and requiring substantial time and effort. Beyond traditional machine learning and deep learning architectures for regular data, several deep learning architectures have been designed for graph-structured data to overcome the limitations of conventional methods. Utilizing graph-structured data in quantitative structure–activity relationship (QSAR) modeling allows models to effectively extract unique features, especially where connectivity information is crucial. In our study, we developed residual graph attention networks (ResGAT), a deep learning architecture for molecular graph-structured data. This architecture is a combination of graph attention networks and shortcut connections to address both regression and classification problems. It is also customizable to adapt to various dataset sizes, enhancing the learning process based on molecular patterns. When tested multiple times with both random and scaffold sampling strategies on nine benchmark molecular datasets, QSAR models developed using ResGAT demonstrated stability and competitive performance compared to state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1