MetFinder:临床前模型组织切片转移负荷自动定量工具

IF 3.9 3区 医学 Q2 CELL BIOLOGY Pigment Cell & Melanoma Research Pub Date : 2024-09-10 DOI:10.1111/pcmr.13195
Alcida Karz, Nicolas Coudray, Erol Bayraktar, Kristyn Galbraith, George Jour, Arman Alberto Sorin Shadaloey, Nicole Eskow, Andrey Rubanov, Maya Navarro, Rana Moubarak, Gillian Baptiste, Grace Levinson, Valeria Mezzano, Mark Alu, Cynthia Loomis, Daniel Lima, Adam Rubens, Lucia Jilaveanu, Aristotelis Tsirigos, Eva Hernando
{"title":"MetFinder:临床前模型组织切片转移负荷自动定量工具","authors":"Alcida Karz, Nicolas Coudray, Erol Bayraktar, Kristyn Galbraith, George Jour, Arman Alberto Sorin Shadaloey, Nicole Eskow, Andrey Rubanov, Maya Navarro, Rana Moubarak, Gillian Baptiste, Grace Levinson, Valeria Mezzano, Mark Alu, Cynthia Loomis, Daniel Lima, Adam Rubens, Lucia Jilaveanu, Aristotelis Tsirigos, Eva Hernando","doi":"10.1111/pcmr.13195","DOIUrl":null,"url":null,"abstract":"As efforts to study the mechanisms of melanoma metastasis and novel therapeutic approaches multiply, researchers need accurate, high‐throughput methods to evaluate the effects on tumor burden resulting from specific interventions. We show that automated quantification of tumor content from whole slide images is a compelling solution to assess in vivo experiments. In order to increase the outflow of data collection from preclinical studies, we assembled a large dataset with annotations and trained a deep neural network for the quantitative analysis of melanoma tumor content on histopathological sections of murine models. After assessing its performance in segmenting these images, the tool obtained consistent results with an orthogonal method (bioluminescence) of measuring metastasis in an experimental setting. This AI‐based algorithm, made freely available to academic laboratories through a web‐interface called MetFinder, promises to become an asset for melanoma researchers and pathologists interested in accurate, quantitative assessment of metastasis burden.","PeriodicalId":219,"journal":{"name":"Pigment Cell & Melanoma Research","volume":"20 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MetFinder: A Tool for Automated Quantitation of Metastatic Burden in Histological Sections From Preclinical Models\",\"authors\":\"Alcida Karz, Nicolas Coudray, Erol Bayraktar, Kristyn Galbraith, George Jour, Arman Alberto Sorin Shadaloey, Nicole Eskow, Andrey Rubanov, Maya Navarro, Rana Moubarak, Gillian Baptiste, Grace Levinson, Valeria Mezzano, Mark Alu, Cynthia Loomis, Daniel Lima, Adam Rubens, Lucia Jilaveanu, Aristotelis Tsirigos, Eva Hernando\",\"doi\":\"10.1111/pcmr.13195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As efforts to study the mechanisms of melanoma metastasis and novel therapeutic approaches multiply, researchers need accurate, high‐throughput methods to evaluate the effects on tumor burden resulting from specific interventions. We show that automated quantification of tumor content from whole slide images is a compelling solution to assess in vivo experiments. In order to increase the outflow of data collection from preclinical studies, we assembled a large dataset with annotations and trained a deep neural network for the quantitative analysis of melanoma tumor content on histopathological sections of murine models. After assessing its performance in segmenting these images, the tool obtained consistent results with an orthogonal method (bioluminescence) of measuring metastasis in an experimental setting. This AI‐based algorithm, made freely available to academic laboratories through a web‐interface called MetFinder, promises to become an asset for melanoma researchers and pathologists interested in accurate, quantitative assessment of metastasis burden.\",\"PeriodicalId\":219,\"journal\":{\"name\":\"Pigment Cell & Melanoma Research\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pigment Cell & Melanoma Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/pcmr.13195\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pigment Cell & Melanoma Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/pcmr.13195","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着研究黑色素瘤转移机制和新型治疗方法的努力成倍增加,研究人员需要精确、高通量的方法来评估特定干预措施对肿瘤负荷的影响。我们的研究表明,自动量化整张切片图像中的肿瘤含量是评估体内实验的一个令人信服的解决方案。为了增加临床前研究的数据收集量,我们收集了一个带有注释的大型数据集,并训练了一个深度神经网络,用于定量分析小鼠模型组织病理学切片上的黑色素瘤肿瘤内容。在对其分割这些图像的性能进行评估后,该工具在实验环境中获得了与测量转移的正交方法(生物发光法)一致的结果。这种基于人工智能的算法通过一个名为 MetFinder 的网络界面免费提供给学术实验室,有望成为黑色素瘤研究人员和病理学家准确、定量评估转移负荷的资产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MetFinder: A Tool for Automated Quantitation of Metastatic Burden in Histological Sections From Preclinical Models
As efforts to study the mechanisms of melanoma metastasis and novel therapeutic approaches multiply, researchers need accurate, high‐throughput methods to evaluate the effects on tumor burden resulting from specific interventions. We show that automated quantification of tumor content from whole slide images is a compelling solution to assess in vivo experiments. In order to increase the outflow of data collection from preclinical studies, we assembled a large dataset with annotations and trained a deep neural network for the quantitative analysis of melanoma tumor content on histopathological sections of murine models. After assessing its performance in segmenting these images, the tool obtained consistent results with an orthogonal method (bioluminescence) of measuring metastasis in an experimental setting. This AI‐based algorithm, made freely available to academic laboratories through a web‐interface called MetFinder, promises to become an asset for melanoma researchers and pathologists interested in accurate, quantitative assessment of metastasis burden.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pigment Cell & Melanoma Research
Pigment Cell & Melanoma Research 医学-皮肤病学
CiteScore
8.90
自引率
2.30%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Pigment Cell & Melanoma Researchpublishes manuscripts on all aspects of pigment cells including development, cell and molecular biology, genetics, diseases of pigment cells including melanoma. Papers that provide insights into the causes and progression of melanoma including the process of metastasis and invasion, proliferation, senescence, apoptosis or gene regulation are especially welcome, as are papers that use the melanocyte system to answer questions of general biological relevance. Papers that are purely descriptive or make only minor advances to our knowledge of pigment cells or melanoma in particular are not suitable for this journal. Keywords Pigment Cell & Melanoma Research, cell biology, melatonin, biochemistry, chemistry, comparative biology, dermatology, developmental biology, genetics, hormones, intracellular signalling, melanoma, molecular biology, ocular and extracutaneous melanin, pharmacology, photobiology, physics, pigmentary disorders
期刊最新文献
The Lipid Droplet Protein DHRS3 Is a Regulator of Melanoma Cell State. UVA Irradiation Promotes Melanoma Cell Proliferation Mediated by OPN3 Independently of ROS Production. Issue Information Bay 11-7082, an NF-κB Inhibitor, Prevents Post-Inflammatory Hyperpigmentation Through Inhibition of Inflammation and Melanogenesis. Low-Dose Baricitinib Plus Narrow-Band Ultraviolet B for the Treatment of Progressive Non-Segmental Vitiligo: A Prospective, Controlled, Open-Label Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1