蚯蚓种群密度对蚯蚓过滤处理液态奶牛粪便性能的影响

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Journal of environmental quality Pub Date : 2024-09-10 DOI:10.1002/jeq2.20626
Gilbert J. Miito, Femi Alege, Joe Harrison, Pius Ndegwa
{"title":"蚯蚓种群密度对蚯蚓过滤处理液态奶牛粪便性能的影响","authors":"Gilbert J. Miito,&nbsp;Femi Alege,&nbsp;Joe Harrison,&nbsp;Pius Ndegwa","doi":"10.1002/jeq2.20626","DOIUrl":null,"url":null,"abstract":"<p>The dairy industry has seen notable changes in the last couple of decades, including increased size of farms and regional concentrations of dairies. This has resulted in substantial manure production in small geographical areas, raising environmental concerns. Vermifiltration, an emerging low cost and eco-friendly technology for treating wastewater, was evaluated to assess the influence of earthworm population density on the performance of a laboratory-scale vermifilter treating liquid dairy manure. We monitored the reduction efficiencies of various components, including total nitrogen (TN), ammonium-nitrogen (NH<sub>4</sub><sup>+</sup>-N), nitrate-nitrogen (NO<sub>3</sub><sup>−</sup>-N), total phosphorus (TP), orthophosphate (ortho-P), chemical oxygen demand (COD), total solids (TS), and total suspended solids (TSS), in treated dairy wastewater. This evaluation was conducted at 0; 5000; 10,000; and 15,000 earthworm densities per cubic meter (m<sup>−3</sup>) of bedding. Reduction efficiencies of 41%–89% (TN), 46%–86% (NH<sub>4</sub><sup>+</sup>-N), 34%–74% (NO<sub>3</sub><sup>−</sup>-N), 3%–17% (TP), 18%–38% (ortho-P), 35%–66% (COD), 24%–54% (TS), and 50%–87% (TSS) were observed with higher earthworm densities exhibiting greater reduction efficiencies. Notably, the densities of <i>Eisenia fetida</i> at 10,000 and 15,000 earthworms m<sup>−3</sup> showed no significant difference in vermifilter performance. This suggests that increasing the <i>Eisenia fetida</i> density beyond 10,000 earthworms m<sup>−3</sup> may not further improve the vermifilter's performance in treating dairy wastewater. This study's findings indicate that using vermifiltration with an earthworm population density of 10,000 earthworms m<sup>−3</sup> could effectively mitigate the negative environmental impact of liquid dairy wastewater at a low cost and sustainably.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"53 6","pages":"1176-1187"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jeq2.20626","citationCount":"0","resultStr":"{\"title\":\"Influence of earthworm population density on the performance of vermifiltration for treating liquid dairy manure\",\"authors\":\"Gilbert J. Miito,&nbsp;Femi Alege,&nbsp;Joe Harrison,&nbsp;Pius Ndegwa\",\"doi\":\"10.1002/jeq2.20626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dairy industry has seen notable changes in the last couple of decades, including increased size of farms and regional concentrations of dairies. This has resulted in substantial manure production in small geographical areas, raising environmental concerns. Vermifiltration, an emerging low cost and eco-friendly technology for treating wastewater, was evaluated to assess the influence of earthworm population density on the performance of a laboratory-scale vermifilter treating liquid dairy manure. We monitored the reduction efficiencies of various components, including total nitrogen (TN), ammonium-nitrogen (NH<sub>4</sub><sup>+</sup>-N), nitrate-nitrogen (NO<sub>3</sub><sup>−</sup>-N), total phosphorus (TP), orthophosphate (ortho-P), chemical oxygen demand (COD), total solids (TS), and total suspended solids (TSS), in treated dairy wastewater. This evaluation was conducted at 0; 5000; 10,000; and 15,000 earthworm densities per cubic meter (m<sup>−3</sup>) of bedding. Reduction efficiencies of 41%–89% (TN), 46%–86% (NH<sub>4</sub><sup>+</sup>-N), 34%–74% (NO<sub>3</sub><sup>−</sup>-N), 3%–17% (TP), 18%–38% (ortho-P), 35%–66% (COD), 24%–54% (TS), and 50%–87% (TSS) were observed with higher earthworm densities exhibiting greater reduction efficiencies. Notably, the densities of <i>Eisenia fetida</i> at 10,000 and 15,000 earthworms m<sup>−3</sup> showed no significant difference in vermifilter performance. This suggests that increasing the <i>Eisenia fetida</i> density beyond 10,000 earthworms m<sup>−3</sup> may not further improve the vermifilter's performance in treating dairy wastewater. This study's findings indicate that using vermifiltration with an earthworm population density of 10,000 earthworms m<sup>−3</sup> could effectively mitigate the negative environmental impact of liquid dairy wastewater at a low cost and sustainably.</p>\",\"PeriodicalId\":15732,\"journal\":{\"name\":\"Journal of environmental quality\",\"volume\":\"53 6\",\"pages\":\"1176-1187\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jeq2.20626\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental quality\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jeq2.20626\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental quality","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jeq2.20626","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在过去几十年中,乳制品行业发生了显著变化,包括农场规模扩大和乳制品厂向区域集中。这导致在狭小的地域内产生大量粪便,引发了环境问题。蚯蚓过滤是一种新兴的低成本环保型废水处理技术,我们评估了蚯蚓种群密度对实验室规模蚯蚓过滤器处理液态奶牛粪便性能的影响。我们监测了经处理的奶制品废水中各种成分的减少效率,包括总氮 (TN)、铵态氮 (NH4+-N)、硝态氮 (NO3--N)、总磷 (TP)、正磷酸盐 (ortho-P)、化学需氧量 (COD)、总固体 (TS) 和总悬浮固体 (TSS)。这项评估是在每立方米(m-3)垫料中蚯蚓密度分别为 0、5000、10000 和 15000 的情况下进行的。值得注意的是,蚯蚓密度为 10,000 和 15,000 m-3 的蚯蚓在蚯蚓过滤器性能方面没有显著差异。这表明,将蚯蚓密度提高到 10 000 蚯蚓 m-3 以上可能不会进一步提高蚯蚓过滤器处理奶制品废水的性能。这项研究的结果表明,使用蚯蚓种群密度为 10,000 蚯蚓 m-3 的蚯蚓过滤技术可以有效地减轻液态乳制品废水对环境的负面影响,而且成本低廉,可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of earthworm population density on the performance of vermifiltration for treating liquid dairy manure

The dairy industry has seen notable changes in the last couple of decades, including increased size of farms and regional concentrations of dairies. This has resulted in substantial manure production in small geographical areas, raising environmental concerns. Vermifiltration, an emerging low cost and eco-friendly technology for treating wastewater, was evaluated to assess the influence of earthworm population density on the performance of a laboratory-scale vermifilter treating liquid dairy manure. We monitored the reduction efficiencies of various components, including total nitrogen (TN), ammonium-nitrogen (NH4+-N), nitrate-nitrogen (NO3-N), total phosphorus (TP), orthophosphate (ortho-P), chemical oxygen demand (COD), total solids (TS), and total suspended solids (TSS), in treated dairy wastewater. This evaluation was conducted at 0; 5000; 10,000; and 15,000 earthworm densities per cubic meter (m−3) of bedding. Reduction efficiencies of 41%–89% (TN), 46%–86% (NH4+-N), 34%–74% (NO3-N), 3%–17% (TP), 18%–38% (ortho-P), 35%–66% (COD), 24%–54% (TS), and 50%–87% (TSS) were observed with higher earthworm densities exhibiting greater reduction efficiencies. Notably, the densities of Eisenia fetida at 10,000 and 15,000 earthworms m−3 showed no significant difference in vermifilter performance. This suggests that increasing the Eisenia fetida density beyond 10,000 earthworms m−3 may not further improve the vermifilter's performance in treating dairy wastewater. This study's findings indicate that using vermifiltration with an earthworm population density of 10,000 earthworms m−3 could effectively mitigate the negative environmental impact of liquid dairy wastewater at a low cost and sustainably.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of environmental quality
Journal of environmental quality 环境科学-环境科学
CiteScore
4.90
自引率
8.30%
发文量
123
审稿时长
3 months
期刊介绍: Articles in JEQ cover various aspects of anthropogenic impacts on the environment, including agricultural, terrestrial, atmospheric, and aquatic systems, with emphasis on the understanding of underlying processes. To be acceptable for consideration in JEQ, a manuscript must make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts. The study should define principles of broad applicability, be related to problems over a sizable geographic area, or be of potential interest to a representative number of scientists. Emphasis is given to the understanding of underlying processes rather than to monitoring. Contributions are accepted from all disciplines for consideration by the editorial board. Manuscripts may be volunteered, invited, or coordinated as a special section or symposium.
期刊最新文献
Blended soil amendments: A viable strategy to reduce soluble phosphorus in soils. Chronic enrichment affects nitrogen removal in tidal freshwater river and estuarine creek sediments. ECB-WQ: A Long-Term Agroecosystem Research (LTAR)-Eastern Corn Belt node field-scale water quality dataset. Assessing the impacts of stakeholder involvement in long-term agricultural experiments via a case study in the upper US Midwest. Exploring management and environment effects on edge-of-field phosphorus losses with linear mixed models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1