利用深度谎言图网络,基于光束识别同步加速器中的磁场误差

Conrad Caliari, Adrian Oeftiger, Oliver Boine-Frankenheim
{"title":"利用深度谎言图网络,基于光束识别同步加速器中的磁场误差","authors":"Conrad Caliari, Adrian Oeftiger, Oliver Boine-Frankenheim","doi":"arxiv-2408.11677","DOIUrl":null,"url":null,"abstract":"We present the first experimental validation of the Deep Lie Map Network\n(DLMN) approach for recovering both linear and non-linear optics in a\nsynchrotron. The DLMN facilitates the construction of a detailed accelerator\nmodel by integrating charged particle dynamics with machine learning\nmethodology in a data-driven framework. The primary observable is the centroid\nmotion over a limited number of turns, captured by beam position monitors. The\nDLMN produces an updated description of the accelerator in terms of magnetic\nmultipole components, which can be directly utilized in established accelerator\nphysics tools and tracking codes for further analysis. In this study, we apply\nthe DLMN to the SIS18 hadron synchrotron at GSI for the first time. We discuss the validity of the recovered linear and non-linear optics,\nincluding quadrupole and sextupole errors, and compare our results with\nalternative methods, such as the LOCO fit of a measured orbit response matrix\nand the evaluation of resonance driving terms. The small number of required\ntrajectory measurements, one for linear and three for non-linear optics\nreconstruction, demonstrates the method's time efficiency. Our findings\nindicate that the DLMN is well-suited for identifying linear optics, and the\nrecovery of non-linear optics is achievable within the capabilities of the\ncurrent beam position monitor system. We demonstrate the application of DLMN\nresults through simulated resonance diagrams in tune space and their comparison\nwith measurements. The DLMN provides a novel tool for analyzing the causal\norigins of resonances and exploring potential compensation schemes.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"283 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beam-based Identification of Magnetic Field Errors in a Synchrotron using Deep Lie Map Networks\",\"authors\":\"Conrad Caliari, Adrian Oeftiger, Oliver Boine-Frankenheim\",\"doi\":\"arxiv-2408.11677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the first experimental validation of the Deep Lie Map Network\\n(DLMN) approach for recovering both linear and non-linear optics in a\\nsynchrotron. The DLMN facilitates the construction of a detailed accelerator\\nmodel by integrating charged particle dynamics with machine learning\\nmethodology in a data-driven framework. The primary observable is the centroid\\nmotion over a limited number of turns, captured by beam position monitors. The\\nDLMN produces an updated description of the accelerator in terms of magnetic\\nmultipole components, which can be directly utilized in established accelerator\\nphysics tools and tracking codes for further analysis. In this study, we apply\\nthe DLMN to the SIS18 hadron synchrotron at GSI for the first time. We discuss the validity of the recovered linear and non-linear optics,\\nincluding quadrupole and sextupole errors, and compare our results with\\nalternative methods, such as the LOCO fit of a measured orbit response matrix\\nand the evaluation of resonance driving terms. The small number of required\\ntrajectory measurements, one for linear and three for non-linear optics\\nreconstruction, demonstrates the method's time efficiency. Our findings\\nindicate that the DLMN is well-suited for identifying linear optics, and the\\nrecovery of non-linear optics is achievable within the capabilities of the\\ncurrent beam position monitor system. We demonstrate the application of DLMN\\nresults through simulated resonance diagrams in tune space and their comparison\\nwith measurements. The DLMN provides a novel tool for analyzing the causal\\norigins of resonances and exploring potential compensation schemes.\",\"PeriodicalId\":501318,\"journal\":{\"name\":\"arXiv - PHYS - Accelerator Physics\",\"volume\":\"283 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Accelerator Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们首次对深度谎言图网络(DLMN)方法进行了实验验证,以恢复同步加速器中的线性和非线性光学特性。通过在数据驱动框架中整合带电粒子动力学和机器学习方法,DLMN有助于构建详细的加速度模型。主要观测指标是由光束位置监测器捕捉到的有限圈数的中心点运动。DLMN 根据磁多极分量生成对加速器的最新描述,可直接用于已有的加速器物理工具和跟踪代码,以进行进一步分析。在本研究中,我们首次将 DLMN 应用于 GSI 的 SIS18 强子同步加速器。我们讨论了恢复的线性和非线性光学的有效性,包括四极子和六极子误差,并将我们的结果与其他方法进行了比较,如对测量轨道响应矩阵的 LOCO 拟合和共振驱动项的评估。所需的轨迹测量次数很少,线性光学重建一次,非线性光学重建三次,这证明了该方法的时间效率。我们的研究结果表明,DLMN 非常适合识别线性光学器件,而非线性光学器件的识别在当前光束位置监测系统的能力范围内是可以实现的。我们通过模拟调谐空间共振图及其与测量结果的比较,展示了 DLMN 结果的应用。DLMN 为分析共振的因果关系和探索潜在的补偿方案提供了一种新工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beam-based Identification of Magnetic Field Errors in a Synchrotron using Deep Lie Map Networks
We present the first experimental validation of the Deep Lie Map Network (DLMN) approach for recovering both linear and non-linear optics in a synchrotron. The DLMN facilitates the construction of a detailed accelerator model by integrating charged particle dynamics with machine learning methodology in a data-driven framework. The primary observable is the centroid motion over a limited number of turns, captured by beam position monitors. The DLMN produces an updated description of the accelerator in terms of magnetic multipole components, which can be directly utilized in established accelerator physics tools and tracking codes for further analysis. In this study, we apply the DLMN to the SIS18 hadron synchrotron at GSI for the first time. We discuss the validity of the recovered linear and non-linear optics, including quadrupole and sextupole errors, and compare our results with alternative methods, such as the LOCO fit of a measured orbit response matrix and the evaluation of resonance driving terms. The small number of required trajectory measurements, one for linear and three for non-linear optics reconstruction, demonstrates the method's time efficiency. Our findings indicate that the DLMN is well-suited for identifying linear optics, and the recovery of non-linear optics is achievable within the capabilities of the current beam position monitor system. We demonstrate the application of DLMN results through simulated resonance diagrams in tune space and their comparison with measurements. The DLMN provides a novel tool for analyzing the causal origins of resonances and exploring potential compensation schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Potential of Resonance Islands and Bent Crystals for a Novel Slow Extraction from Circular Hadron Accelerators Space Charge and Future Light Sources Beam Dynamics simulations for ERDC project -- SRF linac for industrial use Realizing Steady-State Microbunching with Optical Stochastic Crystallization Towards Agentic AI on Particle Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1