Ibrahim H. Fangary, Mostafa A. Kamel, Abdellah S. Tolba, Ahmed M. Orabi, Lotfy M. Abdel-Salam
{"title":"综合遥感数据和岩相分析绘制埃及中东部沙漠乌姆哈德地区新新生代基底岩石岩性图","authors":"Ibrahim H. Fangary, Mostafa A. Kamel, Abdellah S. Tolba, Ahmed M. Orabi, Lotfy M. Abdel-Salam","doi":"10.1007/s12524-024-01960-9","DOIUrl":null,"url":null,"abstract":"<p>This study aims to map the rock types in the Um Had region by integrating remote sensing applications of Landsat-8 (OLI) image processing, field studies, and petrographic investigations. The present work involves updating the existing geological map of the Um Had area in the central Eastern Desert, Egypt, due to the lack of a precise and accurate geological map. Several rock types dating to the Neoproterozoic Era, including oceanic crust (ophiolitic and island arc) and continental crust assemblages, originated in the region during two tectonic stages (late to post-orogenic and syn-orogenic). Remote sensing technology is already widely utilized for various geological domains like mineralogy, lithology mapping, geomorphology, and others. In our study, it is specifically used for lithological mapping. We utilized the optimum index factor and correlation coefficient methods to identify the most effective results from False-Color Composite (FCC), Principal Component Analysis (PC), and Band Ratio (BR). These techniques, combined with supervised classification, enabled us to distinguish among different rock units based on their spectral signatures. All results were combined with the previously mentioned techniques that include principal component images (PC1, PC4, and PC3; PC2, PC3, and PC4) and band ratio images (2/4, 5/7, and 5/3 × 2; 4/2, 5/6, and 6/7). Consequently, this supported the geological mapping and confirmed the field and petrographic investigations. This approach enabled the identification of seventeen distinct rock units, namely serpentinite, biotite schist, talc schist, metabasalt, metaandesite, metadacite, metarhyolite, metagabbro, quartz diorite, tonalite, rhyolite, granodiorite, monzogranite, syenogranite, siltstone, graywacke, and conglomerate. A comparative analysis of the newly modified and created lithological maps with previously published maps of the Um Had region significantly enhanced the accuracy and robustness of geological mapping and rock unit identification.</p>","PeriodicalId":17510,"journal":{"name":"Journal of the Indian Society of Remote Sensing","volume":"23 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of Remotely Sensed Data and the Petrographic Analysis for Lithological Mapping of Neoproterozoic Basement Rocks at Um Had Area, Central Eastern Desert, Egypt\",\"authors\":\"Ibrahim H. Fangary, Mostafa A. Kamel, Abdellah S. Tolba, Ahmed M. Orabi, Lotfy M. Abdel-Salam\",\"doi\":\"10.1007/s12524-024-01960-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aims to map the rock types in the Um Had region by integrating remote sensing applications of Landsat-8 (OLI) image processing, field studies, and petrographic investigations. The present work involves updating the existing geological map of the Um Had area in the central Eastern Desert, Egypt, due to the lack of a precise and accurate geological map. Several rock types dating to the Neoproterozoic Era, including oceanic crust (ophiolitic and island arc) and continental crust assemblages, originated in the region during two tectonic stages (late to post-orogenic and syn-orogenic). Remote sensing technology is already widely utilized for various geological domains like mineralogy, lithology mapping, geomorphology, and others. In our study, it is specifically used for lithological mapping. We utilized the optimum index factor and correlation coefficient methods to identify the most effective results from False-Color Composite (FCC), Principal Component Analysis (PC), and Band Ratio (BR). These techniques, combined with supervised classification, enabled us to distinguish among different rock units based on their spectral signatures. All results were combined with the previously mentioned techniques that include principal component images (PC1, PC4, and PC3; PC2, PC3, and PC4) and band ratio images (2/4, 5/7, and 5/3 × 2; 4/2, 5/6, and 6/7). Consequently, this supported the geological mapping and confirmed the field and petrographic investigations. This approach enabled the identification of seventeen distinct rock units, namely serpentinite, biotite schist, talc schist, metabasalt, metaandesite, metadacite, metarhyolite, metagabbro, quartz diorite, tonalite, rhyolite, granodiorite, monzogranite, syenogranite, siltstone, graywacke, and conglomerate. A comparative analysis of the newly modified and created lithological maps with previously published maps of the Um Had region significantly enhanced the accuracy and robustness of geological mapping and rock unit identification.</p>\",\"PeriodicalId\":17510,\"journal\":{\"name\":\"Journal of the Indian Society of Remote Sensing\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Society of Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12524-024-01960-9\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Society of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12524-024-01960-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Integration of Remotely Sensed Data and the Petrographic Analysis for Lithological Mapping of Neoproterozoic Basement Rocks at Um Had Area, Central Eastern Desert, Egypt
This study aims to map the rock types in the Um Had region by integrating remote sensing applications of Landsat-8 (OLI) image processing, field studies, and petrographic investigations. The present work involves updating the existing geological map of the Um Had area in the central Eastern Desert, Egypt, due to the lack of a precise and accurate geological map. Several rock types dating to the Neoproterozoic Era, including oceanic crust (ophiolitic and island arc) and continental crust assemblages, originated in the region during two tectonic stages (late to post-orogenic and syn-orogenic). Remote sensing technology is already widely utilized for various geological domains like mineralogy, lithology mapping, geomorphology, and others. In our study, it is specifically used for lithological mapping. We utilized the optimum index factor and correlation coefficient methods to identify the most effective results from False-Color Composite (FCC), Principal Component Analysis (PC), and Band Ratio (BR). These techniques, combined with supervised classification, enabled us to distinguish among different rock units based on their spectral signatures. All results were combined with the previously mentioned techniques that include principal component images (PC1, PC4, and PC3; PC2, PC3, and PC4) and band ratio images (2/4, 5/7, and 5/3 × 2; 4/2, 5/6, and 6/7). Consequently, this supported the geological mapping and confirmed the field and petrographic investigations. This approach enabled the identification of seventeen distinct rock units, namely serpentinite, biotite schist, talc schist, metabasalt, metaandesite, metadacite, metarhyolite, metagabbro, quartz diorite, tonalite, rhyolite, granodiorite, monzogranite, syenogranite, siltstone, graywacke, and conglomerate. A comparative analysis of the newly modified and created lithological maps with previously published maps of the Um Had region significantly enhanced the accuracy and robustness of geological mapping and rock unit identification.
期刊介绍:
The aims and scope of the Journal of the Indian Society of Remote Sensing are to help towards advancement, dissemination and application of the knowledge of Remote Sensing technology, which is deemed to include photo interpretation, photogrammetry, aerial photography, image processing, and other related technologies in the field of survey, planning and management of natural resources and other areas of application where the technology is considered to be appropriate, to promote interaction among all persons, bodies, institutions (private and/or state-owned) and industries interested in achieving advancement, dissemination and application of the technology, to encourage and undertake research in remote sensing and related technologies and to undertake and execute all acts which shall promote all or any of the aims and objectives of the Indian Society of Remote Sensing.