{"title":"孟加拉国丘陵地区基于遥感和地理信息系统的滑坡易发性绘图:不同地理空间模型的比较","authors":"Saiful Islam Apu, Noshin Sharmili, Md. Yousuf Gazi, Md. Bodruddoza Mia, Shamima Ferdousi Sifa","doi":"10.1007/s12524-024-01988-x","DOIUrl":null,"url":null,"abstract":"<p>Landslide is a common hazardous phenomenon in Bangladesh’s hilly areas, and Khagrachari is one of the regions that face frequent causalities due to landslide events. The present study has utilized the analytical hierarchy process (AHP) based multi-criteria evaluation techniques, frequency ratio (FR), modified frequency ratio (MFR), and information value method (IVM) approaches in the GIS environment to identify the landslide susceptible zones. The study uniquely employed 12 distinct parameters in this region to prepare the landslide susceptibility index (LSI) map of Khagrachari. The six unique LSI maps have been produced by three classification approaches, i.e., Quantile, Equal Interval, and Natural Break for decision matrix, and three different statistical modeling to compare the result. We found that the most susceptible zones of the Khagrachari district are Matiranga, Khagrachari Sadar, and Dighinala Upazila. The higher susceptibility has been primarily contributed by moderate-higher slope angle (14°–68°), high relative relief (176–601 m), geological structures, spares to moderate vegetation indices, and a high percentage of soil moisture (35–65%). Considering the classification approaches, around 9% of the area (~ 676 km<sup>2</sup>) is classified as a very high-hazard zone. In addition, we suggest that the MFR geospatial model has better prospects than IVM, AHP, and FR, as ~ 40% of the susceptible areas include more than 80% of the total landslide areas for the modified frequency ratio model. This study emphasizes the importance of implementing specific initiatives and activities to minimize landslide risks in Khagrachari. In addition, the present study installs the groundwork for future research to enhance geospatial modeling techniques and allows for comparisons with neighboring areas, thus expanding our knowledge of landslide susceptibility in the Chittagong Hill Tracts and adjacent regions of the Bengal Basin.</p>","PeriodicalId":17510,"journal":{"name":"Journal of the Indian Society of Remote Sensing","volume":"23 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote Sensing and GIS-Based Landslide Susceptibility Mapping in a Hilly District of Bangladesh: A Comparison of Different Geospatial Models\",\"authors\":\"Saiful Islam Apu, Noshin Sharmili, Md. Yousuf Gazi, Md. Bodruddoza Mia, Shamima Ferdousi Sifa\",\"doi\":\"10.1007/s12524-024-01988-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Landslide is a common hazardous phenomenon in Bangladesh’s hilly areas, and Khagrachari is one of the regions that face frequent causalities due to landslide events. The present study has utilized the analytical hierarchy process (AHP) based multi-criteria evaluation techniques, frequency ratio (FR), modified frequency ratio (MFR), and information value method (IVM) approaches in the GIS environment to identify the landslide susceptible zones. The study uniquely employed 12 distinct parameters in this region to prepare the landslide susceptibility index (LSI) map of Khagrachari. The six unique LSI maps have been produced by three classification approaches, i.e., Quantile, Equal Interval, and Natural Break for decision matrix, and three different statistical modeling to compare the result. We found that the most susceptible zones of the Khagrachari district are Matiranga, Khagrachari Sadar, and Dighinala Upazila. The higher susceptibility has been primarily contributed by moderate-higher slope angle (14°–68°), high relative relief (176–601 m), geological structures, spares to moderate vegetation indices, and a high percentage of soil moisture (35–65%). Considering the classification approaches, around 9% of the area (~ 676 km<sup>2</sup>) is classified as a very high-hazard zone. In addition, we suggest that the MFR geospatial model has better prospects than IVM, AHP, and FR, as ~ 40% of the susceptible areas include more than 80% of the total landslide areas for the modified frequency ratio model. This study emphasizes the importance of implementing specific initiatives and activities to minimize landslide risks in Khagrachari. In addition, the present study installs the groundwork for future research to enhance geospatial modeling techniques and allows for comparisons with neighboring areas, thus expanding our knowledge of landslide susceptibility in the Chittagong Hill Tracts and adjacent regions of the Bengal Basin.</p>\",\"PeriodicalId\":17510,\"journal\":{\"name\":\"Journal of the Indian Society of Remote Sensing\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Society of Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12524-024-01988-x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Society of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12524-024-01988-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Remote Sensing and GIS-Based Landslide Susceptibility Mapping in a Hilly District of Bangladesh: A Comparison of Different Geospatial Models
Landslide is a common hazardous phenomenon in Bangladesh’s hilly areas, and Khagrachari is one of the regions that face frequent causalities due to landslide events. The present study has utilized the analytical hierarchy process (AHP) based multi-criteria evaluation techniques, frequency ratio (FR), modified frequency ratio (MFR), and information value method (IVM) approaches in the GIS environment to identify the landslide susceptible zones. The study uniquely employed 12 distinct parameters in this region to prepare the landslide susceptibility index (LSI) map of Khagrachari. The six unique LSI maps have been produced by three classification approaches, i.e., Quantile, Equal Interval, and Natural Break for decision matrix, and three different statistical modeling to compare the result. We found that the most susceptible zones of the Khagrachari district are Matiranga, Khagrachari Sadar, and Dighinala Upazila. The higher susceptibility has been primarily contributed by moderate-higher slope angle (14°–68°), high relative relief (176–601 m), geological structures, spares to moderate vegetation indices, and a high percentage of soil moisture (35–65%). Considering the classification approaches, around 9% of the area (~ 676 km2) is classified as a very high-hazard zone. In addition, we suggest that the MFR geospatial model has better prospects than IVM, AHP, and FR, as ~ 40% of the susceptible areas include more than 80% of the total landslide areas for the modified frequency ratio model. This study emphasizes the importance of implementing specific initiatives and activities to minimize landslide risks in Khagrachari. In addition, the present study installs the groundwork for future research to enhance geospatial modeling techniques and allows for comparisons with neighboring areas, thus expanding our knowledge of landslide susceptibility in the Chittagong Hill Tracts and adjacent regions of the Bengal Basin.
期刊介绍:
The aims and scope of the Journal of the Indian Society of Remote Sensing are to help towards advancement, dissemination and application of the knowledge of Remote Sensing technology, which is deemed to include photo interpretation, photogrammetry, aerial photography, image processing, and other related technologies in the field of survey, planning and management of natural resources and other areas of application where the technology is considered to be appropriate, to promote interaction among all persons, bodies, institutions (private and/or state-owned) and industries interested in achieving advancement, dissemination and application of the technology, to encourage and undertake research in remote sensing and related technologies and to undertake and execute all acts which shall promote all or any of the aims and objectives of the Indian Society of Remote Sensing.