Sadiq Setiniyaz, R. Apsimon, P. H. Williams, C. Barbagallo, S. A. Bogacz, R. M. Bodenstei, K. Deitrick
{"title":"用于实验的强能量回收直列加速器的束破裂不稳定性研究","authors":"Sadiq Setiniyaz, R. Apsimon, P. H. Williams, C. Barbagallo, S. A. Bogacz, R. M. Bodenstei, K. Deitrick","doi":"arxiv-2409.02798","DOIUrl":null,"url":null,"abstract":"The maximum achievable beam current in an Energy Recovery Linac (ERL) is\noften constrained by Beam Breakup (BBU) instability. Our previous research\nhighlighted that filling patterns have a substantial impact on BBU\ninstabilities in multi-pass ERLs. In this study, we extend our investigation to\nthe 8-cavity model of the Powerful ERL for Experiment (PERLE). We evaluate its\nrequirements for damping cavity Higher Order Modes (HOMs) and propose optimal\nfilling patterns and bunch timing strategies. Our findings reveal a significant\nnew insight: while filling patterns are crucial, the timing of bunches also\nplays a critical role in mitigating HOM beam loading and BBU instability. This\npreviously underestimated factor is essential for effective BBU control. We\nestimated the PERLE threshold current using both analytical and numerical\nmodels, incorporating the designed PERLE HOM dampers. During manufacturing, HOM\nfrequencies are expected to vary slightly, with an assumed RMS frequency jitter\nof 0.001 between cavities for the same HOM. Introducing this jitter into our\nmodels, we found that the dampers effectively suppressed BBU instability,\nachieving a threshold current an order of magnitude higher than the design\nrequirement. Our results offer new insights into ERL BBU beam dynamics and have\nimportant implications for the design of future ERLs.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beam Breakup Instability Studies of Powerful Energy Recovery Linac for Experiments\",\"authors\":\"Sadiq Setiniyaz, R. Apsimon, P. H. Williams, C. Barbagallo, S. A. Bogacz, R. M. Bodenstei, K. Deitrick\",\"doi\":\"arxiv-2409.02798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The maximum achievable beam current in an Energy Recovery Linac (ERL) is\\noften constrained by Beam Breakup (BBU) instability. Our previous research\\nhighlighted that filling patterns have a substantial impact on BBU\\ninstabilities in multi-pass ERLs. In this study, we extend our investigation to\\nthe 8-cavity model of the Powerful ERL for Experiment (PERLE). We evaluate its\\nrequirements for damping cavity Higher Order Modes (HOMs) and propose optimal\\nfilling patterns and bunch timing strategies. Our findings reveal a significant\\nnew insight: while filling patterns are crucial, the timing of bunches also\\nplays a critical role in mitigating HOM beam loading and BBU instability. This\\npreviously underestimated factor is essential for effective BBU control. We\\nestimated the PERLE threshold current using both analytical and numerical\\nmodels, incorporating the designed PERLE HOM dampers. During manufacturing, HOM\\nfrequencies are expected to vary slightly, with an assumed RMS frequency jitter\\nof 0.001 between cavities for the same HOM. Introducing this jitter into our\\nmodels, we found that the dampers effectively suppressed BBU instability,\\nachieving a threshold current an order of magnitude higher than the design\\nrequirement. Our results offer new insights into ERL BBU beam dynamics and have\\nimportant implications for the design of future ERLs.\",\"PeriodicalId\":501318,\"journal\":{\"name\":\"arXiv - PHYS - Accelerator Physics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Accelerator Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
能量回收直列加速器(ERL)中可达到的最大光束电流往往受到光束破裂(BBU)不稳定性的限制。我们之前的研究强调,填充模式对多通道ERL中的BBU不稳定性有很大影响。在本研究中,我们将研究扩展到了用于实验的强力 ERL(PERLE)的 8 腔模型。我们评估了它对阻尼腔高阶模(HOMs)的要求,并提出了优化填充模式和波束定时策略。我们的研究结果揭示了一个重要的新观点:虽然填充模式至关重要,但束的时间选择在减轻 HOM 梁负载和 BBU 不稳定性方面也起着关键作用。这个之前被低估的因素对于有效控制 BBU 至关重要。我们使用分析和数值模型估算了 PERLE 的阈值电流,并结合设计的 PERLE HOM 阻尼器。在制造过程中,HOM 频率预计会略有不同,假定同一 HOM 的腔体之间的有效值频率抖动为 0.001。将这种抖动引入我们的模型后,我们发现阻尼器有效地抑制了 BBU 的不稳定性,使阈值电流比设计要求高出一个数量级。我们的研究结果为ERL BBU波束动力学提供了新的见解,对未来ERL的设计具有重要意义。
Beam Breakup Instability Studies of Powerful Energy Recovery Linac for Experiments
The maximum achievable beam current in an Energy Recovery Linac (ERL) is
often constrained by Beam Breakup (BBU) instability. Our previous research
highlighted that filling patterns have a substantial impact on BBU
instabilities in multi-pass ERLs. In this study, we extend our investigation to
the 8-cavity model of the Powerful ERL for Experiment (PERLE). We evaluate its
requirements for damping cavity Higher Order Modes (HOMs) and propose optimal
filling patterns and bunch timing strategies. Our findings reveal a significant
new insight: while filling patterns are crucial, the timing of bunches also
plays a critical role in mitigating HOM beam loading and BBU instability. This
previously underestimated factor is essential for effective BBU control. We
estimated the PERLE threshold current using both analytical and numerical
models, incorporating the designed PERLE HOM dampers. During manufacturing, HOM
frequencies are expected to vary slightly, with an assumed RMS frequency jitter
of 0.001 between cavities for the same HOM. Introducing this jitter into our
models, we found that the dampers effectively suppressed BBU instability,
achieving a threshold current an order of magnitude higher than the design
requirement. Our results offer new insights into ERL BBU beam dynamics and have
important implications for the design of future ERLs.