{"title":"骆驼乳清蛋白和黄芩素抑制 IgE 和非 IgE 引起的过敏性休克小鼠模型中肥大细胞的脱颗粒作用:肥大细胞下游细胞信号传导的潜在机制。","authors":"Hend Abbas,Gamal Badr,Gamal Ramadan,Sahar Sobhy Abd-Elhalem","doi":"10.1080/08820139.2024.2400538","DOIUrl":null,"url":null,"abstract":"INTRODUCTION\r\nNovel treatments are being researched to develop more safe and effective protective medications for anaphylaxis. Camel whey protein (CWP) and baicalein (BAC, one of the major flavones) have multiple beneficial properties including anti-inflammatory and antioxidant activities.\r\n\r\nMETHODS\r\nThe current study investigated/compared the therapeutic protection of repeated intragastric administration of CWP (100 mg/kg body weight, as an animal extract) and BAC (10 mg/kg body weight, as a plant extract), before the challenge with ovalbumin (OVA) or receiving the compound 48/80 (C48/80), against mice models for IgE-independent and dependent anaphylaxes. Besides, their effects on mast cells (MCs) downstream cell signaling were explored.\r\n\r\nRESULTS\r\nThe results revealed that CWP and BAC reduced the mortality rate, as compared with a MCs stabilizer \"sulfasalazine (SSZ, 100 mg/kg body weight, intraperitoneally),\" in both mice models. Furthermore, they prevented the MCs degranulation and significantly reduced (p < .05) lung tissue levels of cell signaling (p-AKT, p-ERK, and p-IκBα). Additionally, they decreased histamine, tryptase, leukotriene C4, prostaglandin D2, interleukin (IL)-4, and IL-10 levels in broncho-alveolar and peritoneal lavages in systemic anaphylaxis mice models. They also restored the stabilization of peritoneal MCs membrane in inverted light microscopy results accompanied by amelioration of the lung histology.\r\n\r\nDISCUSSION\r\nThe present study provided evidence for the protective therapeutic effect of CWP and BAC against anaphylaxis. As a result, CWP and BAC may be used as preventative supplemented regimens for both non-vegetarian and vegetarian consumers to treat allergy through downregulation of MCs signal transduction pathways, and hence controlling the production of inflammatory mediators.","PeriodicalId":13387,"journal":{"name":"Immunological Investigations","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Camel Whey Protein and Baicalein Suppressed Mast Cell Degranulation in Mice Models of IgE- and Non-IgE-Mediated Anaphylaxes: Potential Mechanisms on Downstream Cell Signaling of Mast Cells.\",\"authors\":\"Hend Abbas,Gamal Badr,Gamal Ramadan,Sahar Sobhy Abd-Elhalem\",\"doi\":\"10.1080/08820139.2024.2400538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"INTRODUCTION\\r\\nNovel treatments are being researched to develop more safe and effective protective medications for anaphylaxis. Camel whey protein (CWP) and baicalein (BAC, one of the major flavones) have multiple beneficial properties including anti-inflammatory and antioxidant activities.\\r\\n\\r\\nMETHODS\\r\\nThe current study investigated/compared the therapeutic protection of repeated intragastric administration of CWP (100 mg/kg body weight, as an animal extract) and BAC (10 mg/kg body weight, as a plant extract), before the challenge with ovalbumin (OVA) or receiving the compound 48/80 (C48/80), against mice models for IgE-independent and dependent anaphylaxes. Besides, their effects on mast cells (MCs) downstream cell signaling were explored.\\r\\n\\r\\nRESULTS\\r\\nThe results revealed that CWP and BAC reduced the mortality rate, as compared with a MCs stabilizer \\\"sulfasalazine (SSZ, 100 mg/kg body weight, intraperitoneally),\\\" in both mice models. Furthermore, they prevented the MCs degranulation and significantly reduced (p < .05) lung tissue levels of cell signaling (p-AKT, p-ERK, and p-IκBα). Additionally, they decreased histamine, tryptase, leukotriene C4, prostaglandin D2, interleukin (IL)-4, and IL-10 levels in broncho-alveolar and peritoneal lavages in systemic anaphylaxis mice models. They also restored the stabilization of peritoneal MCs membrane in inverted light microscopy results accompanied by amelioration of the lung histology.\\r\\n\\r\\nDISCUSSION\\r\\nThe present study provided evidence for the protective therapeutic effect of CWP and BAC against anaphylaxis. As a result, CWP and BAC may be used as preventative supplemented regimens for both non-vegetarian and vegetarian consumers to treat allergy through downregulation of MCs signal transduction pathways, and hence controlling the production of inflammatory mediators.\",\"PeriodicalId\":13387,\"journal\":{\"name\":\"Immunological Investigations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunological Investigations\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08820139.2024.2400538\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunological Investigations","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08820139.2024.2400538","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Camel Whey Protein and Baicalein Suppressed Mast Cell Degranulation in Mice Models of IgE- and Non-IgE-Mediated Anaphylaxes: Potential Mechanisms on Downstream Cell Signaling of Mast Cells.
INTRODUCTION
Novel treatments are being researched to develop more safe and effective protective medications for anaphylaxis. Camel whey protein (CWP) and baicalein (BAC, one of the major flavones) have multiple beneficial properties including anti-inflammatory and antioxidant activities.
METHODS
The current study investigated/compared the therapeutic protection of repeated intragastric administration of CWP (100 mg/kg body weight, as an animal extract) and BAC (10 mg/kg body weight, as a plant extract), before the challenge with ovalbumin (OVA) or receiving the compound 48/80 (C48/80), against mice models for IgE-independent and dependent anaphylaxes. Besides, their effects on mast cells (MCs) downstream cell signaling were explored.
RESULTS
The results revealed that CWP and BAC reduced the mortality rate, as compared with a MCs stabilizer "sulfasalazine (SSZ, 100 mg/kg body weight, intraperitoneally)," in both mice models. Furthermore, they prevented the MCs degranulation and significantly reduced (p < .05) lung tissue levels of cell signaling (p-AKT, p-ERK, and p-IκBα). Additionally, they decreased histamine, tryptase, leukotriene C4, prostaglandin D2, interleukin (IL)-4, and IL-10 levels in broncho-alveolar and peritoneal lavages in systemic anaphylaxis mice models. They also restored the stabilization of peritoneal MCs membrane in inverted light microscopy results accompanied by amelioration of the lung histology.
DISCUSSION
The present study provided evidence for the protective therapeutic effect of CWP and BAC against anaphylaxis. As a result, CWP and BAC may be used as preventative supplemented regimens for both non-vegetarian and vegetarian consumers to treat allergy through downregulation of MCs signal transduction pathways, and hence controlling the production of inflammatory mediators.
期刊介绍:
Disseminating immunological developments on a worldwide basis, Immunological Investigations encompasses all facets of fundamental and applied immunology, including immunohematology and the study of allergies. This journal provides information presented in the form of original research articles and book reviews, giving a truly in-depth examination of the latest advances in molecular and cellular immunology.