丙型肝炎诊断技术的最新进展

IF 5.7 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Biological Engineering Pub Date : 2024-09-09 DOI:10.1186/s13036-024-00443-2
Anna S. Baber, Baviththira Suganthan, Ramaraja P. Ramasamy
{"title":"丙型肝炎诊断技术的最新进展","authors":"Anna S. Baber, Baviththira Suganthan, Ramaraja P. Ramasamy","doi":"10.1186/s13036-024-00443-2","DOIUrl":null,"url":null,"abstract":"Nearly 60 million people worldwide are infected with Hepatitis C Virus (HCV), a bloodborne pathogen which leads to liver cirrhosis and increases the risk of hepatocellular carcinoma. Those with limited access to healthcare resources, such as injection drug users and people in low- and middle-income countries, carry the highest burden. The current diagnostic algorithm for HCV is slow and costly, leading to a significant barrier in diagnosis and treatment for those most at risk from HCV. There remains no available vaccine for HCV, and infection is often asymptomatic until significant cirrhosis has occurred, which makes screening incredibly important to prevent liver damage and transmission. Recent investigation has sought to address these issues through improvements in various aspects of the diagnostic procedure, using methods such as isothermal amplification techniques for viral RNA amplification, the use of viral protein as an analyte, and the incorporation of streamlined, self-contained testing systems to reduce administrative skill requirements. This review provides a comprehensive overview of current commercial standards and novel improvements in HCV diagnostics, as well as a framework for future integration of these improvements to develop a one-step diagnostic that meets the needs of those most affected. ","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"57 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current advances in Hepatitis C diagnostics\",\"authors\":\"Anna S. Baber, Baviththira Suganthan, Ramaraja P. Ramasamy\",\"doi\":\"10.1186/s13036-024-00443-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nearly 60 million people worldwide are infected with Hepatitis C Virus (HCV), a bloodborne pathogen which leads to liver cirrhosis and increases the risk of hepatocellular carcinoma. Those with limited access to healthcare resources, such as injection drug users and people in low- and middle-income countries, carry the highest burden. The current diagnostic algorithm for HCV is slow and costly, leading to a significant barrier in diagnosis and treatment for those most at risk from HCV. There remains no available vaccine for HCV, and infection is often asymptomatic until significant cirrhosis has occurred, which makes screening incredibly important to prevent liver damage and transmission. Recent investigation has sought to address these issues through improvements in various aspects of the diagnostic procedure, using methods such as isothermal amplification techniques for viral RNA amplification, the use of viral protein as an analyte, and the incorporation of streamlined, self-contained testing systems to reduce administrative skill requirements. This review provides a comprehensive overview of current commercial standards and novel improvements in HCV diagnostics, as well as a framework for future integration of these improvements to develop a one-step diagnostic that meets the needs of those most affected. \",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-024-00443-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-024-00443-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

全世界有近 6000 万人感染了丙型肝炎病毒(HCV),这种血液传播的病原体会导致肝硬化并增加肝细胞癌的风险。注射毒品使用者和中低收入国家的人等医疗资源有限的人群负担最重。目前的丙型肝炎病毒(HCV)诊断算法既缓慢又昂贵,导致丙型肝炎病毒高危人群在诊断和治疗方面面临巨大障碍。目前还没有针对丙型肝炎病毒的疫苗,而且感染者在出现严重肝硬化之前往往没有症状,因此筛查对于预防肝损伤和传播极其重要。最近的研究试图通过改进诊断程序的各个方面来解决这些问题,所采用的方法包括用于病毒 RNA 扩增的等温扩增技术、使用病毒蛋白作为分析物,以及采用精简、独立的检测系统来降低对管理技能的要求。本综述全面概述了 HCV 诊断的现行商业标准和新的改进,以及未来整合这些改进的框架,以开发出一步到位的诊断方法,满足最受影响人群的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Current advances in Hepatitis C diagnostics
Nearly 60 million people worldwide are infected with Hepatitis C Virus (HCV), a bloodborne pathogen which leads to liver cirrhosis and increases the risk of hepatocellular carcinoma. Those with limited access to healthcare resources, such as injection drug users and people in low- and middle-income countries, carry the highest burden. The current diagnostic algorithm for HCV is slow and costly, leading to a significant barrier in diagnosis and treatment for those most at risk from HCV. There remains no available vaccine for HCV, and infection is often asymptomatic until significant cirrhosis has occurred, which makes screening incredibly important to prevent liver damage and transmission. Recent investigation has sought to address these issues through improvements in various aspects of the diagnostic procedure, using methods such as isothermal amplification techniques for viral RNA amplification, the use of viral protein as an analyte, and the incorporation of streamlined, self-contained testing systems to reduce administrative skill requirements. This review provides a comprehensive overview of current commercial standards and novel improvements in HCV diagnostics, as well as a framework for future integration of these improvements to develop a one-step diagnostic that meets the needs of those most affected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Engineering
Journal of Biological Engineering BIOCHEMICAL RESEARCH METHODS-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
7.10
自引率
1.80%
发文量
32
审稿时长
17 weeks
期刊介绍: Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to: Synthetic biology and cellular design Biomolecular, cellular and tissue engineering Bioproduction and metabolic engineering Biosensors Ecological and environmental engineering Biological engineering education and the biodesign process As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels. Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.
期刊最新文献
Identification and verification of diagnostic biomarkers for deep infiltrating endometriosis based on machine learning algorithms. Engineering Saccharomyces cerevisiae for the production of natural osmolyte glucosyl glycerol from sucrose and glycerol through Ccw12-based surface display of sucrose phosphorylase. A dual-inducible control system for multistep biosynthetic pathways. A rotenone organotypic whole hemisphere slice model of mitochondrial abnormalities in the neonatal brain. High-throughput proliferation and activation of NK-92MI cell spheroids via a homemade one-step closed bioreactor in pseudostatic cultures for immunocellular therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1