模拟恒星日冕雨和弹弓状突出物

Simon Daley-Yates, Moira Jardine
{"title":"模拟恒星日冕雨和弹弓状突出物","authors":"Simon Daley-Yates, Moira Jardine","doi":"arxiv-2409.07297","DOIUrl":null,"url":null,"abstract":"We have numerically demonstrated that simulated cool star coronae naturally\nform condensations. If the star rotates slowly, with a co-rotation radius\ngreater than the Alfv\\'{e}n radius (i.e. $R_{\\mathrm{K}} > R_{\\mathrm{A}}$),\nthese condensations will form below the co-rotation radius $R_{\\mathrm{K}}$ and\nsimply fall back to the stellar surface as coronal rain. If, however, the star\nis more rapidly rotating, ($R_{\\mathrm{K}} < R_{\\mathrm{A}}$), not only rain\nwill form but also ``slingshot prominences''. In this case, condensations\ncollect into a large mass reservoir around the co-rotation radius, from which\nperiodic centrifugal ejections occur. In this case, some $51\\%$ of the coronal\nmass is cold gas, either in rain or prominences. We find that 21\\% of the mass\nlost by our simulated fast rotating star is cold gas. Studies of stellar\nmass-loss from the hot wind do not consider this component of the wind and\ntherefore systematically underestimate mass-loss rates of these stars.\nCentrifugal ejections happen periodically, between every 7.5 - 17.5 hours with\nmasses clustering around $10^{16}$ g, These results agree well with\nobservational statistics. Contrasting the fast and slow rotating\nmagnetospheres, we find that there are two distinct types of solutions, high\nlying and low lying loops. Low lying loops only produce coronal rain whereas\nhigh lying loops produce both rain and slingshots.","PeriodicalId":501068,"journal":{"name":"arXiv - PHYS - Solar and Stellar Astrophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating stellar coronal rain and slingshot prominences\",\"authors\":\"Simon Daley-Yates, Moira Jardine\",\"doi\":\"arxiv-2409.07297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have numerically demonstrated that simulated cool star coronae naturally\\nform condensations. If the star rotates slowly, with a co-rotation radius\\ngreater than the Alfv\\\\'{e}n radius (i.e. $R_{\\\\mathrm{K}} > R_{\\\\mathrm{A}}$),\\nthese condensations will form below the co-rotation radius $R_{\\\\mathrm{K}}$ and\\nsimply fall back to the stellar surface as coronal rain. If, however, the star\\nis more rapidly rotating, ($R_{\\\\mathrm{K}} < R_{\\\\mathrm{A}}$), not only rain\\nwill form but also ``slingshot prominences''. In this case, condensations\\ncollect into a large mass reservoir around the co-rotation radius, from which\\nperiodic centrifugal ejections occur. In this case, some $51\\\\%$ of the coronal\\nmass is cold gas, either in rain or prominences. We find that 21\\\\% of the mass\\nlost by our simulated fast rotating star is cold gas. Studies of stellar\\nmass-loss from the hot wind do not consider this component of the wind and\\ntherefore systematically underestimate mass-loss rates of these stars.\\nCentrifugal ejections happen periodically, between every 7.5 - 17.5 hours with\\nmasses clustering around $10^{16}$ g, These results agree well with\\nobservational statistics. Contrasting the fast and slow rotating\\nmagnetospheres, we find that there are two distinct types of solutions, high\\nlying and low lying loops. Low lying loops only produce coronal rain whereas\\nhigh lying loops produce both rain and slingshots.\",\"PeriodicalId\":501068,\"journal\":{\"name\":\"arXiv - PHYS - Solar and Stellar Astrophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Solar and Stellar Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Solar and Stellar Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们用数值方法证明,模拟的冷恒星日冕会自然形成凝聚。如果恒星旋转缓慢,共转半径大于Alfv\'{e}n 半径(即$R_{\mathrm{K}} > R_{\mathrm{A}}$),这些凝聚体就会在共转半径$R_{\mathrm{K}}$下方形成,并以日冕雨的形式简单地落回恒星表面。然而,如果恒星的自转速度更快($R_{mathrm{K}} < R_{mathrm{A}}$),那么不仅会形成日冕雨,还会形成 "弹射状突出"。在这种情况下,冷凝物会在同向旋转半径周围聚集成一个巨大的质量库,并从中发生周期性的离心喷射。在这种情况下,日冕质量中有51%是冷气体,要么是雨,要么是突出物。我们发现,我们模拟的快速旋转恒星损失的质量中有21%是冷气体。离心喷射是周期性的,每7.5-17.5小时发生一次,质量聚集在10^{16}$ g左右,这些结果与观测统计数据非常吻合。对比快速旋转和慢速旋转的磁层,我们发现有两种不同类型的解决方案:高位环和低位环。低平环只产生日冕雨,而高平环同时产生日冕雨和弹弓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulating stellar coronal rain and slingshot prominences
We have numerically demonstrated that simulated cool star coronae naturally form condensations. If the star rotates slowly, with a co-rotation radius greater than the Alfv\'{e}n radius (i.e. $R_{\mathrm{K}} > R_{\mathrm{A}}$), these condensations will form below the co-rotation radius $R_{\mathrm{K}}$ and simply fall back to the stellar surface as coronal rain. If, however, the star is more rapidly rotating, ($R_{\mathrm{K}} < R_{\mathrm{A}}$), not only rain will form but also ``slingshot prominences''. In this case, condensations collect into a large mass reservoir around the co-rotation radius, from which periodic centrifugal ejections occur. In this case, some $51\%$ of the coronal mass is cold gas, either in rain or prominences. We find that 21\% of the mass lost by our simulated fast rotating star is cold gas. Studies of stellar mass-loss from the hot wind do not consider this component of the wind and therefore systematically underestimate mass-loss rates of these stars. Centrifugal ejections happen periodically, between every 7.5 - 17.5 hours with masses clustering around $10^{16}$ g, These results agree well with observational statistics. Contrasting the fast and slow rotating magnetospheres, we find that there are two distinct types of solutions, high lying and low lying loops. Low lying loops only produce coronal rain whereas high lying loops produce both rain and slingshots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of blue and yellow straggler stars of Berkeley 39 using Swift/UVOT Benchmarking the spectroscopic masses of 249 evolved stars using asteroseismology with TESS IBEX Observations of Elastic Scattering of Interstellar Helium by Solar Wind Particles Denoising medium resolution stellar spectra with neural networks Multi-wavelength spectroscopic analysis of the ULX Holmberg II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1