研究去/不去任务中的联合行动:开发仿人眼球机器人并验证行动空间

IF 3.8 2区 计算机科学 Q2 ROBOTICS International Journal of Social Robotics Pub Date : 2024-08-27 DOI:10.1007/s12369-024-01168-4
Kotaro Hayashi
{"title":"研究去/不去任务中的联合行动:开发仿人眼球机器人并验证行动空间","authors":"Kotaro Hayashi","doi":"10.1007/s12369-024-01168-4","DOIUrl":null,"url":null,"abstract":"<p>Human–robot collaboration (HRC) is a natural progression of technological development and can improve job performance, address labor shortages, and reduce labor costs. However, it is still uncertain whether joint action, similar to that occurring between humans, can be replicated between humans and robots. Many robotic researchers have focused on joint action, and it has been demonstrated that gaze cueing plays a significant role in this context. Currently, previous studies on joint action use humanoids; however, robots utilized in the research on human-robot collaboration lack human-like eyes needed for verification. Therefore, this study focuses on the development of an eye robot with gaze-cueing behaviors that can be easily integrated into existing robotic systems. As another theme of this study, we proposed the use of fixation duration as a new metric, which is distinct from the commonly used response time, for the quantitative evaluation of joint action research. These are verified through a Go/No-go task under six conditions—three behavioral (i.e., joint action, joint attention-only, and alone), each with two partner conditions (robot or human partner). While developing a human-like eye robot, this study demonstrates the potential of a robot to be a better joint action partner than an uncertain human, with participants exhibiting the best reaction times when partnered with a robot. The shared action space of the participants was investigated, where a transference of the action space indicates the expression of joint action. The fixation duration indicates that the proposed robot cause participants to move their action space to include that of the robot. These results suggest that the proposed collaborative robot can initiate a joint action between a robot and a human, and can perform as a more effective partner in joint actions compared to an unfamiliar human. This study showcased the capacity of fixation duration as a quantitative assessment metric for joint action.</p>","PeriodicalId":14361,"journal":{"name":"International Journal of Social Robotics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Joint Action in Go/No-Go Tasks: Development of a Human-Like Eye Robot and Verification of Action Space\",\"authors\":\"Kotaro Hayashi\",\"doi\":\"10.1007/s12369-024-01168-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human–robot collaboration (HRC) is a natural progression of technological development and can improve job performance, address labor shortages, and reduce labor costs. However, it is still uncertain whether joint action, similar to that occurring between humans, can be replicated between humans and robots. Many robotic researchers have focused on joint action, and it has been demonstrated that gaze cueing plays a significant role in this context. Currently, previous studies on joint action use humanoids; however, robots utilized in the research on human-robot collaboration lack human-like eyes needed for verification. Therefore, this study focuses on the development of an eye robot with gaze-cueing behaviors that can be easily integrated into existing robotic systems. As another theme of this study, we proposed the use of fixation duration as a new metric, which is distinct from the commonly used response time, for the quantitative evaluation of joint action research. These are verified through a Go/No-go task under six conditions—three behavioral (i.e., joint action, joint attention-only, and alone), each with two partner conditions (robot or human partner). While developing a human-like eye robot, this study demonstrates the potential of a robot to be a better joint action partner than an uncertain human, with participants exhibiting the best reaction times when partnered with a robot. The shared action space of the participants was investigated, where a transference of the action space indicates the expression of joint action. The fixation duration indicates that the proposed robot cause participants to move their action space to include that of the robot. These results suggest that the proposed collaborative robot can initiate a joint action between a robot and a human, and can perform as a more effective partner in joint actions compared to an unfamiliar human. This study showcased the capacity of fixation duration as a quantitative assessment metric for joint action.</p>\",\"PeriodicalId\":14361,\"journal\":{\"name\":\"International Journal of Social Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Social Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12369-024-01168-4\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Social Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12369-024-01168-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

人机协作(HRC)是技术发展的必然趋势,可以提高工作绩效、解决劳动力短缺问题并降低劳动力成本。然而,人类与机器人之间能否复制类似于人类之间的联合行动,目前仍不确定。许多机器人研究人员都把重点放在联合行动上,研究表明,凝视提示在联合行动中发挥着重要作用。目前,以往关于联合行动的研究都使用人形机器人,但在人机协作研究中使用的机器人缺乏验证所需的类似人类的眼睛。因此,本研究的重点是开发一种具有注视提示行为的眼睛机器人,它可以很容易地集成到现有的机器人系统中。作为本研究的另一个主题,我们提出使用固定持续时间作为新的指标,与常用的反应时间不同,用于联合行动研究的定量评估。我们通过六种条件下的 "走/不走 "任务验证了这一点--三种行为条件(即联合行动、仅联合关注和单独行动),每种条件有两种搭档条件(机器人或人类搭档)。本研究在开发类人眼球机器人的同时,也证明了机器人比不确定的人类更适合作为联合行动伙伴的潜力。研究调查了参与者的共享行动空间,行动空间的转移表明了联合行动的表达。固定持续时间表明,拟议的机器人会使参与者移动自己的行动空间,以包括机器人的行动空间。这些结果表明,所提议的协作机器人能够发起机器人与人类之间的联合行动,并且与陌生人类相比,在联合行动中能够成为更有效的合作伙伴。这项研究展示了固定持续时间作为联合行动量化评估指标的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of Joint Action in Go/No-Go Tasks: Development of a Human-Like Eye Robot and Verification of Action Space

Human–robot collaboration (HRC) is a natural progression of technological development and can improve job performance, address labor shortages, and reduce labor costs. However, it is still uncertain whether joint action, similar to that occurring between humans, can be replicated between humans and robots. Many robotic researchers have focused on joint action, and it has been demonstrated that gaze cueing plays a significant role in this context. Currently, previous studies on joint action use humanoids; however, robots utilized in the research on human-robot collaboration lack human-like eyes needed for verification. Therefore, this study focuses on the development of an eye robot with gaze-cueing behaviors that can be easily integrated into existing robotic systems. As another theme of this study, we proposed the use of fixation duration as a new metric, which is distinct from the commonly used response time, for the quantitative evaluation of joint action research. These are verified through a Go/No-go task under six conditions—three behavioral (i.e., joint action, joint attention-only, and alone), each with two partner conditions (robot or human partner). While developing a human-like eye robot, this study demonstrates the potential of a robot to be a better joint action partner than an uncertain human, with participants exhibiting the best reaction times when partnered with a robot. The shared action space of the participants was investigated, where a transference of the action space indicates the expression of joint action. The fixation duration indicates that the proposed robot cause participants to move their action space to include that of the robot. These results suggest that the proposed collaborative robot can initiate a joint action between a robot and a human, and can perform as a more effective partner in joint actions compared to an unfamiliar human. This study showcased the capacity of fixation duration as a quantitative assessment metric for joint action.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
8.50%
发文量
95
期刊介绍: Social Robotics is the study of robots that are able to interact and communicate among themselves, with humans, and with the environment, within the social and cultural structure attached to its role. The journal covers a broad spectrum of topics related to the latest technologies, new research results and developments in the area of social robotics on all levels, from developments in core enabling technologies to system integration, aesthetic design, applications and social implications. It provides a platform for like-minded researchers to present their findings and latest developments in social robotics, covering relevant advances in engineering, computing, arts and social sciences. The journal publishes original, peer reviewed articles and contributions on innovative ideas and concepts, new discoveries and improvements, as well as novel applications, by leading researchers and developers regarding the latest fundamental advances in the core technologies that form the backbone of social robotics, distinguished developmental projects in the area, as well as seminal works in aesthetic design, ethics and philosophy, studies on social impact and influence, pertaining to social robotics.
期刊最新文献
Time-to-Collision Based Social Force Model for Intelligent Agents on Shared Public Spaces Investigation of Joint Action in Go/No-Go Tasks: Development of a Human-Like Eye Robot and Verification of Action Space How Non-experts Kinesthetically Teach a Robot over Multiple Sessions: Diversity in Teaching Styles and Effects on Performance The Child Factor in Child–Robot Interaction: Discovering the Impact of Developmental Stage and Individual Characteristics Is the Robot Spying on me? A Study on Perceived Privacy in Telepresence Scenarios in a Care Setting with Mobile and Humanoid Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1