Rosa Porro, Thomas Ercole, Giuseppe Pipitò, Gennaro Vessio, Corrado Loglisci
{"title":"成功之路:预测股权和借贷众筹活动中投资者动态的机器学习方法","authors":"Rosa Porro, Thomas Ercole, Giuseppe Pipitò, Gennaro Vessio, Corrado Loglisci","doi":"10.1007/s10844-024-00883-8","DOIUrl":null,"url":null,"abstract":"<p>Crowdfunding has evolved into a formidable mechanism for collective financing, challenging traditional funding sources such as bank loans, venture capital, and private equity with its global reach and versatile applications across various sectors. This paper explores the complex dynamics of crowdfunding platforms, particularly focusing on investor behaviour and investment patterns within equity and lending campaigns in Italy. By leveraging advanced machine learning techniques, including XGBoost and LSTM networks, we develop predictive models that dynamically analyze real-time and historical data to accurately forecast the success or failure of crowdfunding campaigns. To address the existing gaps in crowdfunding analysis tools, we introduce two novel datasets—one for equity crowdfunding and another for lending. Moreover, our approach extends beyond traditional binary success metrics, proposing novel measures. The insights gained from this study could support crowdfunding strategies, significantly improving project selection and promotional tactics on platforms. By enhancing decision-making processes and providing forward-looking guidance to investors, our computational model aims to empower both campaign creators and platform administrators, ultimately improving the overall efficacy and sustainability of crowdfunding as a financing tool.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathways to success: a machine learning approach to predicting investor dynamics in equity and lending crowdfunding campaigns\",\"authors\":\"Rosa Porro, Thomas Ercole, Giuseppe Pipitò, Gennaro Vessio, Corrado Loglisci\",\"doi\":\"10.1007/s10844-024-00883-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Crowdfunding has evolved into a formidable mechanism for collective financing, challenging traditional funding sources such as bank loans, venture capital, and private equity with its global reach and versatile applications across various sectors. This paper explores the complex dynamics of crowdfunding platforms, particularly focusing on investor behaviour and investment patterns within equity and lending campaigns in Italy. By leveraging advanced machine learning techniques, including XGBoost and LSTM networks, we develop predictive models that dynamically analyze real-time and historical data to accurately forecast the success or failure of crowdfunding campaigns. To address the existing gaps in crowdfunding analysis tools, we introduce two novel datasets—one for equity crowdfunding and another for lending. Moreover, our approach extends beyond traditional binary success metrics, proposing novel measures. The insights gained from this study could support crowdfunding strategies, significantly improving project selection and promotional tactics on platforms. By enhancing decision-making processes and providing forward-looking guidance to investors, our computational model aims to empower both campaign creators and platform administrators, ultimately improving the overall efficacy and sustainability of crowdfunding as a financing tool.</p>\",\"PeriodicalId\":56119,\"journal\":{\"name\":\"Journal of Intelligent Information Systems\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10844-024-00883-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-024-00883-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Pathways to success: a machine learning approach to predicting investor dynamics in equity and lending crowdfunding campaigns
Crowdfunding has evolved into a formidable mechanism for collective financing, challenging traditional funding sources such as bank loans, venture capital, and private equity with its global reach and versatile applications across various sectors. This paper explores the complex dynamics of crowdfunding platforms, particularly focusing on investor behaviour and investment patterns within equity and lending campaigns in Italy. By leveraging advanced machine learning techniques, including XGBoost and LSTM networks, we develop predictive models that dynamically analyze real-time and historical data to accurately forecast the success or failure of crowdfunding campaigns. To address the existing gaps in crowdfunding analysis tools, we introduce two novel datasets—one for equity crowdfunding and another for lending. Moreover, our approach extends beyond traditional binary success metrics, proposing novel measures. The insights gained from this study could support crowdfunding strategies, significantly improving project selection and promotional tactics on platforms. By enhancing decision-making processes and providing forward-looking guidance to investors, our computational model aims to empower both campaign creators and platform administrators, ultimately improving the overall efficacy and sustainability of crowdfunding as a financing tool.
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.