内存计算的关键:RRAM 中的矢量矩阵乘法基准框架

Md Tawsif Rahman Chowdhury, Huynh Quang Nguyen Vo, Paritosh Ramanan, Murat Yildirim, Gozde Tutuncuoglu
{"title":"内存计算的关键:RRAM 中的矢量矩阵乘法基准框架","authors":"Md Tawsif Rahman Chowdhury, Huynh Quang Nguyen Vo, Paritosh Ramanan, Murat Yildirim, Gozde Tutuncuoglu","doi":"arxiv-2409.06140","DOIUrl":null,"url":null,"abstract":"The Von Neumann bottleneck, a fundamental challenge in conventional computer\narchitecture, arises from the inability to execute fetch and data operations\nsimultaneously due to a shared bus linking processing and memory units. This\nbottleneck significantly limits system performance, increases energy\nconsumption, and exacerbates computational complexity. Emerging technologies\nsuch as Resistive Random Access Memories (RRAMs), leveraging crossbar arrays,\noffer promising alternatives for addressing the demands of data-intensive\ncomputational tasks through in-memory computing of analog vector-matrix\nmultiplication (VMM) operations. However, the propagation of errors due to\ndevice and circuit-level imperfections remains a significant challenge. In this\nstudy, we introduce MELISO (In-Memory Linear Solver), a comprehensive\nend-to-end VMM benchmarking framework tailored for RRAM-based systems. MELISO\nevaluates the error propagation in VMM operations, analyzing the impact of RRAM\ndevice metrics on error magnitude and distribution. This paper introduces the\nMELISO framework and demonstrates its utility in characterizing and mitigating\nVMM error propagation using state-of-the-art RRAM device metrics.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Lynchpin of In-Memory Computing: A Benchmarking Framework for Vector-Matrix Multiplication in RRAMs\",\"authors\":\"Md Tawsif Rahman Chowdhury, Huynh Quang Nguyen Vo, Paritosh Ramanan, Murat Yildirim, Gozde Tutuncuoglu\",\"doi\":\"arxiv-2409.06140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Von Neumann bottleneck, a fundamental challenge in conventional computer\\narchitecture, arises from the inability to execute fetch and data operations\\nsimultaneously due to a shared bus linking processing and memory units. This\\nbottleneck significantly limits system performance, increases energy\\nconsumption, and exacerbates computational complexity. Emerging technologies\\nsuch as Resistive Random Access Memories (RRAMs), leveraging crossbar arrays,\\noffer promising alternatives for addressing the demands of data-intensive\\ncomputational tasks through in-memory computing of analog vector-matrix\\nmultiplication (VMM) operations. However, the propagation of errors due to\\ndevice and circuit-level imperfections remains a significant challenge. In this\\nstudy, we introduce MELISO (In-Memory Linear Solver), a comprehensive\\nend-to-end VMM benchmarking framework tailored for RRAM-based systems. MELISO\\nevaluates the error propagation in VMM operations, analyzing the impact of RRAM\\ndevice metrics on error magnitude and distribution. This paper introduces the\\nMELISO framework and demonstrates its utility in characterizing and mitigating\\nVMM error propagation using state-of-the-art RRAM device metrics.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

冯-诺依曼瓶颈是传统计算机体系结构中的一个基本挑战,其产生的原因是连接处理单元和内存单元的共享总线无法同时执行取数和数据操作。这一瓶颈极大地限制了系统性能,增加了能耗,并加剧了计算的复杂性。电阻式随机存取存储器(RRAM)等新兴技术利用交叉条阵列,通过模拟向量矩阵乘法(VMM)运算的内存计算,为满足数据密集型计算任务的需求提供了前景广阔的替代方案。然而,器件和电路级缺陷导致的误差传播仍然是一个重大挑战。在这项研究中,我们介绍了 MELISO(内存线性求解器),这是一个为基于 RRAM 的系统量身定制的端到端综合 VMM 基准测试框架。MELISO 评估 VMM 操作中的错误传播,分析 RRAM 设备指标对错误大小和分布的影响。本文介绍了 MELISO 框架,并展示了该框架在利用最先进的 RRAM 设备指标描述和减轻 VMM 错误传播方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Lynchpin of In-Memory Computing: A Benchmarking Framework for Vector-Matrix Multiplication in RRAMs
The Von Neumann bottleneck, a fundamental challenge in conventional computer architecture, arises from the inability to execute fetch and data operations simultaneously due to a shared bus linking processing and memory units. This bottleneck significantly limits system performance, increases energy consumption, and exacerbates computational complexity. Emerging technologies such as Resistive Random Access Memories (RRAMs), leveraging crossbar arrays, offer promising alternatives for addressing the demands of data-intensive computational tasks through in-memory computing of analog vector-matrix multiplication (VMM) operations. However, the propagation of errors due to device and circuit-level imperfections remains a significant challenge. In this study, we introduce MELISO (In-Memory Linear Solver), a comprehensive end-to-end VMM benchmarking framework tailored for RRAM-based systems. MELISO evaluates the error propagation in VMM operations, analyzing the impact of RRAM device metrics on error magnitude and distribution. This paper introduces the MELISO framework and demonstrates its utility in characterizing and mitigating VMM error propagation using state-of-the-art RRAM device metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1