优化基于学习的控制系统的证伪:多保真度贝叶斯方法

Zahra Shahrooei, Mykel J. Kochenderfer, Ali Baheri
{"title":"优化基于学习的控制系统的证伪:多保真度贝叶斯方法","authors":"Zahra Shahrooei, Mykel J. Kochenderfer, Ali Baheri","doi":"arxiv-2409.08097","DOIUrl":null,"url":null,"abstract":"Testing controllers in safety-critical systems is vital for ensuring their\nsafety and preventing failures. In this paper, we address the falsification\nproblem within learning-based closed-loop control systems through simulation.\nThis problem involves the identification of counterexamples that violate system\nsafety requirements and can be formulated as an optimization task based on\nthese requirements. Using full-fidelity simulator data in this optimization\nproblem can be computationally expensive. To improve efficiency, we propose a\nmulti-fidelity Bayesian optimization falsification framework that harnesses\nsimulators with varying levels of accuracy. Our proposed framework can\ntransition between different simulators and establish meaningful relationships\nbetween them. Through multi-fidelity Bayesian optimization, we determine both\nthe optimal system input likely to be a counterexample and the appropriate\nfidelity level for assessment. We evaluated our approach across various Gym\nenvironments, each featuring different levels of fidelity. Our experiments\ndemonstrate that multi-fidelity Bayesian optimization is more computationally\nefficient than full-fidelity Bayesian optimization and other baseline methods\nin detecting counterexamples. A Python implementation of the algorithm is\navailable at https://github.com/SAILRIT/MFBO_Falsification.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Falsification for Learning-Based Control Systems: A Multi-Fidelity Bayesian Approach\",\"authors\":\"Zahra Shahrooei, Mykel J. Kochenderfer, Ali Baheri\",\"doi\":\"arxiv-2409.08097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Testing controllers in safety-critical systems is vital for ensuring their\\nsafety and preventing failures. In this paper, we address the falsification\\nproblem within learning-based closed-loop control systems through simulation.\\nThis problem involves the identification of counterexamples that violate system\\nsafety requirements and can be formulated as an optimization task based on\\nthese requirements. Using full-fidelity simulator data in this optimization\\nproblem can be computationally expensive. To improve efficiency, we propose a\\nmulti-fidelity Bayesian optimization falsification framework that harnesses\\nsimulators with varying levels of accuracy. Our proposed framework can\\ntransition between different simulators and establish meaningful relationships\\nbetween them. Through multi-fidelity Bayesian optimization, we determine both\\nthe optimal system input likely to be a counterexample and the appropriate\\nfidelity level for assessment. We evaluated our approach across various Gym\\nenvironments, each featuring different levels of fidelity. Our experiments\\ndemonstrate that multi-fidelity Bayesian optimization is more computationally\\nefficient than full-fidelity Bayesian optimization and other baseline methods\\nin detecting counterexamples. A Python implementation of the algorithm is\\navailable at https://github.com/SAILRIT/MFBO_Falsification.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

测试安全关键型系统中的控制器对于确保其安全性和防止故障至关重要。在本文中,我们通过仿真解决了基于学习的闭环控制系统中的证伪问题。这个问题涉及识别违反系统安全要求的反例,并可根据这些要求制定优化任务。在这一优化问题中使用全保真模拟器数据的计算成本很高。为了提高效率,我们提出了多保真度贝叶斯优化证伪框架,利用不同精度的模拟器。我们提出的框架可以在不同的模拟器之间转换,并在它们之间建立有意义的关系。通过多保真度贝叶斯优化,我们确定了可能成为反例的最佳系统输入以及评估的适当保真度级别。我们在各种体育馆环境中评估了我们的方法,每种环境都具有不同的保真度。我们的实验证明,在检测反例方面,多保真度贝叶斯优化比全保真度贝叶斯优化和其他基线方法的计算效率更高。该算法的 Python 实现请访问 https://github.com/SAILRIT/MFBO_Falsification。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Falsification for Learning-Based Control Systems: A Multi-Fidelity Bayesian Approach
Testing controllers in safety-critical systems is vital for ensuring their safety and preventing failures. In this paper, we address the falsification problem within learning-based closed-loop control systems through simulation. This problem involves the identification of counterexamples that violate system safety requirements and can be formulated as an optimization task based on these requirements. Using full-fidelity simulator data in this optimization problem can be computationally expensive. To improve efficiency, we propose a multi-fidelity Bayesian optimization falsification framework that harnesses simulators with varying levels of accuracy. Our proposed framework can transition between different simulators and establish meaningful relationships between them. Through multi-fidelity Bayesian optimization, we determine both the optimal system input likely to be a counterexample and the appropriate fidelity level for assessment. We evaluated our approach across various Gym environments, each featuring different levels of fidelity. Our experiments demonstrate that multi-fidelity Bayesian optimization is more computationally efficient than full-fidelity Bayesian optimization and other baseline methods in detecting counterexamples. A Python implementation of the algorithm is available at https://github.com/SAILRIT/MFBO_Falsification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1