基于协方差交叉的卡尔曼滤波(DInCIKF)用于分布式姿势估计

Haoying Li, Xinghan Li, Shuaiting Huang, Chao yang, Junfeng Wu
{"title":"基于协方差交叉的卡尔曼滤波(DInCIKF)用于分布式姿势估计","authors":"Haoying Li, Xinghan Li, Shuaiting Huang, Chao yang, Junfeng Wu","doi":"arxiv-2409.07933","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to distributed pose estimation in the\nmulti-agent system based on an invariant Kalman filter with covariance\nintersection. Our method models uncertainties using Lie algebra and applies\nobject-level observations within Lie groups, which have practical application\nvalue. We integrate covariance intersection to handle estimates that are\ncorrelated and use the invariant Kalman filter for merging independent data\nsources. This strategy allows us to effectively tackle the complex correlations\nof cooperative localization among agents, ensuring our estimates are neither\ntoo conservative nor overly confident. Additionally, we examine the consistency\nand stability of our algorithm, providing evidence of its reliability and\neffectiveness in managing multi-agent systems.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covariance Intersection-based Invariant Kalman Filtering(DInCIKF) for Distributed Pose Estimation\",\"authors\":\"Haoying Li, Xinghan Li, Shuaiting Huang, Chao yang, Junfeng Wu\",\"doi\":\"arxiv-2409.07933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to distributed pose estimation in the\\nmulti-agent system based on an invariant Kalman filter with covariance\\nintersection. Our method models uncertainties using Lie algebra and applies\\nobject-level observations within Lie groups, which have practical application\\nvalue. We integrate covariance intersection to handle estimates that are\\ncorrelated and use the invariant Kalman filter for merging independent data\\nsources. This strategy allows us to effectively tackle the complex correlations\\nof cooperative localization among agents, ensuring our estimates are neither\\ntoo conservative nor overly confident. Additionally, we examine the consistency\\nand stability of our algorithm, providing evidence of its reliability and\\neffectiveness in managing multi-agent systems.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于协方差交集不变卡尔曼滤波器的多代理系统分布式姿态估计新方法。我们的方法使用李代数对不确定性进行建模,并在具有实际应用价值的李群中应用对象级观测。我们整合了协方差交集来处理相关的估计值,并使用不变卡尔曼滤波器来合并独立的数据源。这种策略使我们能够有效地处理代理间合作定位的复杂相关性,确保我们的估计既不过于保守,也不过于自信。此外,我们还检验了算法的一致性和稳定性,为其在多代理系统管理中的可靠性和有效性提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Covariance Intersection-based Invariant Kalman Filtering(DInCIKF) for Distributed Pose Estimation
This paper presents a novel approach to distributed pose estimation in the multi-agent system based on an invariant Kalman filter with covariance intersection. Our method models uncertainties using Lie algebra and applies object-level observations within Lie groups, which have practical application value. We integrate covariance intersection to handle estimates that are correlated and use the invariant Kalman filter for merging independent data sources. This strategy allows us to effectively tackle the complex correlations of cooperative localization among agents, ensuring our estimates are neither too conservative nor overly confident. Additionally, we examine the consistency and stability of our algorithm, providing evidence of its reliability and effectiveness in managing multi-agent systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1