拒绝服务攻击下基于学习的弹性控制

Sayan Chakraborty, Weinan Gao, Kyriakos G. Vamvoudakis, Zhong-Ping Jiang
{"title":"拒绝服务攻击下基于学习的弹性控制","authors":"Sayan Chakraborty, Weinan Gao, Kyriakos G. Vamvoudakis, Zhong-Ping Jiang","doi":"arxiv-2409.07766","DOIUrl":null,"url":null,"abstract":"In this paper, we have proposed a resilient reinforcement learning method for\ndiscrete-time linear systems with unknown parameters, under denial-of-service\n(DoS) attacks. The proposed method is based on policy iteration that learns the\noptimal controller from input-state data amidst DoS attacks. We achieve an\nupper bound for the DoS duration to ensure closed-loop stability. The\nresilience of the closed-loop system, when subjected to DoS attacks with the\nlearned controller and an internal model, has been thoroughly examined. The\neffectiveness of the proposed methodology is demonstrated on an inverted\npendulum on a cart.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilient Learning-Based Control Under Denial-of-Service Attacks\",\"authors\":\"Sayan Chakraborty, Weinan Gao, Kyriakos G. Vamvoudakis, Zhong-Ping Jiang\",\"doi\":\"arxiv-2409.07766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have proposed a resilient reinforcement learning method for\\ndiscrete-time linear systems with unknown parameters, under denial-of-service\\n(DoS) attacks. The proposed method is based on policy iteration that learns the\\noptimal controller from input-state data amidst DoS attacks. We achieve an\\nupper bound for the DoS duration to ensure closed-loop stability. The\\nresilience of the closed-loop system, when subjected to DoS attacks with the\\nlearned controller and an internal model, has been thoroughly examined. The\\neffectiveness of the proposed methodology is demonstrated on an inverted\\npendulum on a cart.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对具有未知参数的离散时间线性系统,提出了一种在拒绝服务(DoS)攻击下的弹性强化学习方法。该方法基于策略迭代,在 DoS 攻击中通过输入状态数据学习最优控制器。我们实现了 DoS 持续时间的上限,以确保闭环稳定性。在使用学习到的控制器和内部模型遭受 DoS 攻击时,我们对闭环系统的复原力进行了深入研究。在小车倒立摆上演示了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resilient Learning-Based Control Under Denial-of-Service Attacks
In this paper, we have proposed a resilient reinforcement learning method for discrete-time linear systems with unknown parameters, under denial-of-service (DoS) attacks. The proposed method is based on policy iteration that learns the optimal controller from input-state data amidst DoS attacks. We achieve an upper bound for the DoS duration to ensure closed-loop stability. The resilience of the closed-loop system, when subjected to DoS attacks with the learned controller and an internal model, has been thoroughly examined. The effectiveness of the proposed methodology is demonstrated on an inverted pendulum on a cart.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1