通过局部共形校准量化 Aleatoric 和 Epistemic 动力学的不确定性

Luís Marques, Dmitry Berenson
{"title":"通过局部共形校准量化 Aleatoric 和 Epistemic 动力学的不确定性","authors":"Luís Marques, Dmitry Berenson","doi":"arxiv-2409.08249","DOIUrl":null,"url":null,"abstract":"Whether learned, simulated, or analytical, approximations of a robot's\ndynamics can be inaccurate when encountering novel environments. Many\napproaches have been proposed to quantify the aleatoric uncertainty of such\nmethods, i.e. uncertainty resulting from stochasticity, however these estimates\nalone are not enough to properly estimate the uncertainty of a model in a novel\nenvironment, where the actual dynamics can change. Such changes can induce\nepistemic uncertainty, i.e. uncertainty due to a lack of information/data.\nAccounting for both epistemic and aleatoric dynamics uncertainty in a\ntheoretically-grounded way remains an open problem. We introduce Local\nUncertainty Conformal Calibration (LUCCa), a conformal prediction-based\napproach that calibrates the aleatoric uncertainty estimates provided by\ndynamics models to generate probabilistically-valid prediction regions of the\nsystem's state. We account for both epistemic and aleatoric uncertainty\nnon-asymptotically, without strong assumptions about the form of the true\ndynamics or how it changes. The calibration is performed locally in the\nstate-action space, leading to uncertainty estimates that are useful for\nplanning. We validate our method by constructing probabilistically-safe plans\nfor a double-integrator under significant changes in dynamics.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Aleatoric and Epistemic Dynamics Uncertainty via Local Conformal Calibration\",\"authors\":\"Luís Marques, Dmitry Berenson\",\"doi\":\"arxiv-2409.08249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whether learned, simulated, or analytical, approximations of a robot's\\ndynamics can be inaccurate when encountering novel environments. Many\\napproaches have been proposed to quantify the aleatoric uncertainty of such\\nmethods, i.e. uncertainty resulting from stochasticity, however these estimates\\nalone are not enough to properly estimate the uncertainty of a model in a novel\\nenvironment, where the actual dynamics can change. Such changes can induce\\nepistemic uncertainty, i.e. uncertainty due to a lack of information/data.\\nAccounting for both epistemic and aleatoric dynamics uncertainty in a\\ntheoretically-grounded way remains an open problem. We introduce Local\\nUncertainty Conformal Calibration (LUCCa), a conformal prediction-based\\napproach that calibrates the aleatoric uncertainty estimates provided by\\ndynamics models to generate probabilistically-valid prediction regions of the\\nsystem's state. We account for both epistemic and aleatoric uncertainty\\nnon-asymptotically, without strong assumptions about the form of the true\\ndynamics or how it changes. The calibration is performed locally in the\\nstate-action space, leading to uncertainty estimates that are useful for\\nplanning. We validate our method by constructing probabilistically-safe plans\\nfor a double-integrator under significant changes in dynamics.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无论是学习、模拟还是分析,机器人动力学的近似值在遇到新环境时都可能不准确。已经提出了许多方法来量化这些方法的不确定性,即随机性导致的不确定性,但这些估计本身不足以正确估计模型在新环境中的不确定性,因为新环境中的实际动态可能会发生变化。以无理论依据的方式计算认识动态不确定性和估计动态不确定性仍然是一个未决问题。我们引入了局部不确定性保形校准(LUCCa),这是一种基于保形预测的方法,它校准动力学模型提供的不确定性估计值,以生成概率上有效的系统状态预测区域。我们非渐进地考虑了认识不确定性和估计不确定性,而不对真实动力学的形式或其如何变化做出强烈假设。校准在状态-行动空间中局部进行,从而得出对规划有用的不确定性估计。我们通过在动力学发生重大变化的情况下构建双积分器的概率安全计划来验证我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying Aleatoric and Epistemic Dynamics Uncertainty via Local Conformal Calibration
Whether learned, simulated, or analytical, approximations of a robot's dynamics can be inaccurate when encountering novel environments. Many approaches have been proposed to quantify the aleatoric uncertainty of such methods, i.e. uncertainty resulting from stochasticity, however these estimates alone are not enough to properly estimate the uncertainty of a model in a novel environment, where the actual dynamics can change. Such changes can induce epistemic uncertainty, i.e. uncertainty due to a lack of information/data. Accounting for both epistemic and aleatoric dynamics uncertainty in a theoretically-grounded way remains an open problem. We introduce Local Uncertainty Conformal Calibration (LUCCa), a conformal prediction-based approach that calibrates the aleatoric uncertainty estimates provided by dynamics models to generate probabilistically-valid prediction regions of the system's state. We account for both epistemic and aleatoric uncertainty non-asymptotically, without strong assumptions about the form of the true dynamics or how it changes. The calibration is performed locally in the state-action space, leading to uncertainty estimates that are useful for planning. We validate our method by constructing probabilistically-safe plans for a double-integrator under significant changes in dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1