使用系统识别工具箱(TM)对动态系统进行深度学习

Tianyu Dai, Khaled Aljanaideh, Rong Chen, Rajiv Singh, Alec Stothert, Lennart Ljung
{"title":"使用系统识别工具箱(TM)对动态系统进行深度学习","authors":"Tianyu Dai, Khaled Aljanaideh, Rong Chen, Rajiv Singh, Alec Stothert, Lennart Ljung","doi":"arxiv-2409.07642","DOIUrl":null,"url":null,"abstract":"MATLAB(R) releases over the last 3 years have witnessed a continuing growth\nin the dynamic modeling capabilities offered by the System Identification\nToolbox(TM). The emphasis has been on integrating deep learning architectures\nand training techniques that facilitate the use of deep neural networks as\nbuilding blocks of nonlinear models. The toolbox offers neural state-space\nmodels which can be extended with auto-encoding features that are particularly\nsuited for reduced-order modeling of large systems. The toolbox contains\nseveral other enhancements that deepen its integration with the state-of-art\nmachine learning techniques, leverage auto-differentiation features for state\nestimation, and enable a direct use of raw numeric matrices and timetables for\ntraining models.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning of Dynamic Systems using System Identification Toolbox(TM)\",\"authors\":\"Tianyu Dai, Khaled Aljanaideh, Rong Chen, Rajiv Singh, Alec Stothert, Lennart Ljung\",\"doi\":\"arxiv-2409.07642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MATLAB(R) releases over the last 3 years have witnessed a continuing growth\\nin the dynamic modeling capabilities offered by the System Identification\\nToolbox(TM). The emphasis has been on integrating deep learning architectures\\nand training techniques that facilitate the use of deep neural networks as\\nbuilding blocks of nonlinear models. The toolbox offers neural state-space\\nmodels which can be extended with auto-encoding features that are particularly\\nsuited for reduced-order modeling of large systems. The toolbox contains\\nseveral other enhancements that deepen its integration with the state-of-art\\nmachine learning techniques, leverage auto-differentiation features for state\\nestimation, and enable a direct use of raw numeric matrices and timetables for\\ntraining models.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去 3 年中发布的 MATLAB(R) 中,系统辨识工具箱(System IdentificationToolbox(TM))提供的动态建模功能持续增长。重点一直放在集成深度学习架构和训练技术上,以促进将深度神经网络用作非线性模型的构建模块。该工具箱提供的神经状态空间模型可通过自动编码功能进行扩展,特别适合大型系统的降阶建模。该工具箱还包含其他一些增强功能,可深化与先进机器学习技术的集成,利用自动区分功能进行状态估计,并可直接使用原始数值矩阵和时间表来训练模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning of Dynamic Systems using System Identification Toolbox(TM)
MATLAB(R) releases over the last 3 years have witnessed a continuing growth in the dynamic modeling capabilities offered by the System Identification Toolbox(TM). The emphasis has been on integrating deep learning architectures and training techniques that facilitate the use of deep neural networks as building blocks of nonlinear models. The toolbox offers neural state-space models which can be extended with auto-encoding features that are particularly suited for reduced-order modeling of large systems. The toolbox contains several other enhancements that deepen its integration with the state-of-art machine learning techniques, leverage auto-differentiation features for state estimation, and enable a direct use of raw numeric matrices and timetables for training models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1