通过气动物理储库计算控制具有前馈滞后补偿功能的气动软弯曲执行器

Junyi Shen, Tetsuro Miyazaki, Kenji Kawashima
{"title":"通过气动物理储库计算控制具有前馈滞后补偿功能的气动软弯曲执行器","authors":"Junyi Shen, Tetsuro Miyazaki, Kenji Kawashima","doi":"arxiv-2409.06961","DOIUrl":null,"url":null,"abstract":"The nonlinearities of soft robots bring control challenges like hysteresis\nbut also provide them with computational capacities. This paper introduces a\nfuzzy pneumatic physical reservoir computing (FPRC) model for feedforward\nhysteresis compensation in motion tracking control of soft actuators. Our\nmethod utilizes a pneumatic bending actuator as a physical reservoir with\nnonlinear computing capacities to control another pneumatic bending actuator.\nThe FPRC model employs a Takagi-Sugeno (T-S) fuzzy model to process outputs\nfrom the physical reservoir. In comparative evaluations, the FPRC model shows\nequivalent training performance to an Echo State Network (ESN) model, whereas\nit exhibits better test accuracies with significantly reduced execution time.\nExperiments validate the proposed FPRC model's effectiveness in controlling the\nbending motion of the pneumatic soft actuator with open and closed-loop control\nsystems. The proposed FPRC model's robustness against environmental\ndisturbances has also been experimentally verified. To the authors' knowledge,\nthis is the first implementation of a physical system in the feedforward\nhysteresis compensation model for controlling soft actuators. This study is\nexpected to advance physical reservoir computing in nonlinear control\napplications and extend the feedforward hysteresis compensation methods for\ncontrolling soft actuators.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control Pneumatic Soft Bending Actuator with Feedforward Hysteresis Compensation by Pneumatic Physical Reservoir Computing\",\"authors\":\"Junyi Shen, Tetsuro Miyazaki, Kenji Kawashima\",\"doi\":\"arxiv-2409.06961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinearities of soft robots bring control challenges like hysteresis\\nbut also provide them with computational capacities. This paper introduces a\\nfuzzy pneumatic physical reservoir computing (FPRC) model for feedforward\\nhysteresis compensation in motion tracking control of soft actuators. Our\\nmethod utilizes a pneumatic bending actuator as a physical reservoir with\\nnonlinear computing capacities to control another pneumatic bending actuator.\\nThe FPRC model employs a Takagi-Sugeno (T-S) fuzzy model to process outputs\\nfrom the physical reservoir. In comparative evaluations, the FPRC model shows\\nequivalent training performance to an Echo State Network (ESN) model, whereas\\nit exhibits better test accuracies with significantly reduced execution time.\\nExperiments validate the proposed FPRC model's effectiveness in controlling the\\nbending motion of the pneumatic soft actuator with open and closed-loop control\\nsystems. The proposed FPRC model's robustness against environmental\\ndisturbances has also been experimentally verified. To the authors' knowledge,\\nthis is the first implementation of a physical system in the feedforward\\nhysteresis compensation model for controlling soft actuators. This study is\\nexpected to advance physical reservoir computing in nonlinear control\\napplications and extend the feedforward hysteresis compensation methods for\\ncontrolling soft actuators.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

软机器人的非线性特性带来了滞后等控制难题,但也为其提供了计算能力。本文介绍了用于软执行器运动跟踪控制中前馈滞后补偿的模糊气动物理库计算(FPRC)模型。FPRC 模型采用高木-菅野(Takagi-Sugeno,T-S)模糊模型来处理来自物理库的输出。在比较评估中,FPRC 模型显示出与回声状态网络 (ESN) 模型相当的训练性能,同时它显示出更好的测试精度,并显著缩短了执行时间。实验验证了所提出的 FPRC 模型在利用开环和闭环控制系统控制气动软执行器的弯曲运动方面的有效性。实验还验证了所提出的 FPRC 模型对环境干扰的鲁棒性。据作者所知,这是首次在控制软执行器的前馈滞后补偿模型中实现物理系统。这项研究有望推动物理储层计算在非线性控制应用中的发展,并扩展用于控制软执行器的前馈滞后补偿方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control Pneumatic Soft Bending Actuator with Feedforward Hysteresis Compensation by Pneumatic Physical Reservoir Computing
The nonlinearities of soft robots bring control challenges like hysteresis but also provide them with computational capacities. This paper introduces a fuzzy pneumatic physical reservoir computing (FPRC) model for feedforward hysteresis compensation in motion tracking control of soft actuators. Our method utilizes a pneumatic bending actuator as a physical reservoir with nonlinear computing capacities to control another pneumatic bending actuator. The FPRC model employs a Takagi-Sugeno (T-S) fuzzy model to process outputs from the physical reservoir. In comparative evaluations, the FPRC model shows equivalent training performance to an Echo State Network (ESN) model, whereas it exhibits better test accuracies with significantly reduced execution time. Experiments validate the proposed FPRC model's effectiveness in controlling the bending motion of the pneumatic soft actuator with open and closed-loop control systems. The proposed FPRC model's robustness against environmental disturbances has also been experimentally verified. To the authors' knowledge, this is the first implementation of a physical system in the feedforward hysteresis compensation model for controlling soft actuators. This study is expected to advance physical reservoir computing in nonlinear control applications and extend the feedforward hysteresis compensation methods for controlling soft actuators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1