线性自回归学习的简短信息理论分析

Ingvar Ziemann
{"title":"线性自回归学习的简短信息理论分析","authors":"Ingvar Ziemann","doi":"arxiv-2409.06437","DOIUrl":null,"url":null,"abstract":"In this note, we give a short information-theoretic proof of the consistency\nof the Gaussian maximum likelihood estimator in linear auto-regressive models.\nOur proof yields nearly optimal non-asymptotic rates for parameter recovery and\nworks without any invocation of stability in the case of finite hypothesis\nclasses.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Short Information-Theoretic Analysis of Linear Auto-Regressive Learning\",\"authors\":\"Ingvar Ziemann\",\"doi\":\"arxiv-2409.06437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we give a short information-theoretic proof of the consistency\\nof the Gaussian maximum likelihood estimator in linear auto-regressive models.\\nOur proof yields nearly optimal non-asymptotic rates for parameter recovery and\\nworks without any invocation of stability in the case of finite hypothesis\\nclasses.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本说明中,我们给出了线性自回归模型中高斯极大似然估计器一致性的简短信息论证明。我们的证明为参数恢复提供了近乎最优的非渐近率,并且在有限假设类的情况下无需引用任何稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Short Information-Theoretic Analysis of Linear Auto-Regressive Learning
In this note, we give a short information-theoretic proof of the consistency of the Gaussian maximum likelihood estimator in linear auto-regressive models. Our proof yields nearly optimal non-asymptotic rates for parameter recovery and works without any invocation of stability in the case of finite hypothesis classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1