结合多方言音素级 BERT 的跨方言音高附着语言文本到语音技术

Kazuki Yamauchi, Yuki Saito, Hiroshi Saruwatari
{"title":"结合多方言音素级 BERT 的跨方言音高附着语言文本到语音技术","authors":"Kazuki Yamauchi, Yuki Saito, Hiroshi Saruwatari","doi":"arxiv-2409.07265","DOIUrl":null,"url":null,"abstract":"We explore cross-dialect text-to-speech (CD-TTS), a task to synthesize\nlearned speakers' voices in non-native dialects, especially in pitch-accent\nlanguages. CD-TTS is important for developing voice agents that naturally\ncommunicate with people across regions. We present a novel TTS model comprising\nthree sub-modules to perform competitively at this task. We first train a\nbackbone TTS model to synthesize dialect speech from a text conditioned on\nphoneme-level accent latent variables (ALVs) extracted from speech by a\nreference encoder. Then, we train an ALV predictor to predict ALVs tailored to\na target dialect from input text leveraging our novel multi-dialect\nphoneme-level BERT. We conduct multi-dialect TTS experiments and evaluate the\neffectiveness of our model by comparing it with a baseline derived from\nconventional dialect TTS methods. The results show that our model improves the\ndialectal naturalness of synthetic speech in CD-TTS.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Dialect Text-To-Speech in Pitch-Accent Language Incorporating Multi-Dialect Phoneme-Level BERT\",\"authors\":\"Kazuki Yamauchi, Yuki Saito, Hiroshi Saruwatari\",\"doi\":\"arxiv-2409.07265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore cross-dialect text-to-speech (CD-TTS), a task to synthesize\\nlearned speakers' voices in non-native dialects, especially in pitch-accent\\nlanguages. CD-TTS is important for developing voice agents that naturally\\ncommunicate with people across regions. We present a novel TTS model comprising\\nthree sub-modules to perform competitively at this task. We first train a\\nbackbone TTS model to synthesize dialect speech from a text conditioned on\\nphoneme-level accent latent variables (ALVs) extracted from speech by a\\nreference encoder. Then, we train an ALV predictor to predict ALVs tailored to\\na target dialect from input text leveraging our novel multi-dialect\\nphoneme-level BERT. We conduct multi-dialect TTS experiments and evaluate the\\neffectiveness of our model by comparing it with a baseline derived from\\nconventional dialect TTS methods. The results show that our model improves the\\ndialectal naturalness of synthetic speech in CD-TTS.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们探讨了跨方言文本到语音(CD-TTS),这是一项用非母语方言,特别是音高增强语言合成学习者声音的任务。CD-TTS 对于开发能与不同地区的人自然交流的语音代理非常重要。我们提出了一种由三个子模块组成的新型 TTS 模型,以在这项任务中表现出竞争力。首先,我们训练一个骨干 TTS 模型,以语音编码器从语音中提取的音素级口音潜变量(ALV)为条件,从文本中合成方言语音。然后,我们训练一个 ALV 预测器,利用我们新颖的多方言音素级 BERT,从输入文本中预测适合目标方言的 ALV。我们进行了多方言 TTS 实验,并通过与传统方言 TTS 方法得出的基线进行比较,评估了我们模型的有效性。结果表明,我们的模型提高了 CD-TTS 中合成语音的方言自然度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-Dialect Text-To-Speech in Pitch-Accent Language Incorporating Multi-Dialect Phoneme-Level BERT
We explore cross-dialect text-to-speech (CD-TTS), a task to synthesize learned speakers' voices in non-native dialects, especially in pitch-accent languages. CD-TTS is important for developing voice agents that naturally communicate with people across regions. We present a novel TTS model comprising three sub-modules to perform competitively at this task. We first train a backbone TTS model to synthesize dialect speech from a text conditioned on phoneme-level accent latent variables (ALVs) extracted from speech by a reference encoder. Then, we train an ALV predictor to predict ALVs tailored to a target dialect from input text leveraging our novel multi-dialect phoneme-level BERT. We conduct multi-dialect TTS experiments and evaluate the effectiveness of our model by comparing it with a baseline derived from conventional dialect TTS methods. The results show that our model improves the dialectal naturalness of synthetic speech in CD-TTS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1