ManaTTS 波斯语:为低资源语言创建 TTS 数据集的秘诀

Mahta Fetrat Qharabagh, Zahra Dehghanian, Hamid R. Rabiee
{"title":"ManaTTS 波斯语:为低资源语言创建 TTS 数据集的秘诀","authors":"Mahta Fetrat Qharabagh, Zahra Dehghanian, Hamid R. Rabiee","doi":"arxiv-2409.07259","DOIUrl":null,"url":null,"abstract":"In this study, we introduce ManaTTS, the most extensive publicly accessible\nsingle-speaker Persian corpus, and a comprehensive framework for collecting\ntranscribed speech datasets for the Persian language. ManaTTS, released under\nthe open CC-0 license, comprises approximately 86 hours of audio with a\nsampling rate of 44.1 kHz. Alongside ManaTTS, we also generated the\nVirgoolInformal dataset to evaluate Persian speech recognition models used for\nforced alignment, extending over 5 hours of audio. The datasets are supported\nby a fully transparent, MIT-licensed pipeline, a testament to innovation in the\nfield. It includes unique tools for sentence tokenization, bounded audio\nsegmentation, and a novel forced alignment method. This alignment technique is\nspecifically designed for low-resource languages, addressing a crucial need in\nthe field. With this dataset, we trained a Tacotron2-based TTS model, achieving\na Mean Opinion Score (MOS) of 3.76, which is remarkably close to the MOS of\n3.86 for the utterances generated by the same vocoder and natural spectrogram,\nand the MOS of 4.01 for the natural waveform, demonstrating the exceptional\nquality and effectiveness of the corpus.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"273 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ManaTTS Persian: a recipe for creating TTS datasets for lower resource languages\",\"authors\":\"Mahta Fetrat Qharabagh, Zahra Dehghanian, Hamid R. Rabiee\",\"doi\":\"arxiv-2409.07259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce ManaTTS, the most extensive publicly accessible\\nsingle-speaker Persian corpus, and a comprehensive framework for collecting\\ntranscribed speech datasets for the Persian language. ManaTTS, released under\\nthe open CC-0 license, comprises approximately 86 hours of audio with a\\nsampling rate of 44.1 kHz. Alongside ManaTTS, we also generated the\\nVirgoolInformal dataset to evaluate Persian speech recognition models used for\\nforced alignment, extending over 5 hours of audio. The datasets are supported\\nby a fully transparent, MIT-licensed pipeline, a testament to innovation in the\\nfield. It includes unique tools for sentence tokenization, bounded audio\\nsegmentation, and a novel forced alignment method. This alignment technique is\\nspecifically designed for low-resource languages, addressing a crucial need in\\nthe field. With this dataset, we trained a Tacotron2-based TTS model, achieving\\na Mean Opinion Score (MOS) of 3.76, which is remarkably close to the MOS of\\n3.86 for the utterances generated by the same vocoder and natural spectrogram,\\nand the MOS of 4.01 for the natural waveform, demonstrating the exceptional\\nquality and effectiveness of the corpus.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":\"273 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们介绍了 ManaTTS,它是最广泛的可公开访问的单人波斯语语料库,也是收集波斯语转录语音数据集的综合框架。ManaTTS 在开放的 CC-0 许可下发布,包含约 86 小时的音频,采样率为 44.1 kHz。除 ManaTTS 外,我们还生成了 VirgoolInformal 数据集,以评估用于强制对齐的波斯语语音识别模型,该数据集的音频时长超过 5 小时。这些数据集由麻省理工学院授权的完全透明的管道提供支持,证明了该领域的创新。它包括用于句子标记化、边界音频分割的独特工具,以及一种新颖的强制对齐方法。这种对齐技术专为低资源语言设计,满足了该领域的关键需求。利用该数据集,我们训练了一个基于 Tacotron2 的 TTS 模型,其平均意见得分(MOS)达到了 3.76,与相同声码器和自然频谱图生成的语篇的 MOS 3.86 和自然波形的 MOS 4.01 非常接近,证明了该语料库的卓越质量和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ManaTTS Persian: a recipe for creating TTS datasets for lower resource languages
In this study, we introduce ManaTTS, the most extensive publicly accessible single-speaker Persian corpus, and a comprehensive framework for collecting transcribed speech datasets for the Persian language. ManaTTS, released under the open CC-0 license, comprises approximately 86 hours of audio with a sampling rate of 44.1 kHz. Alongside ManaTTS, we also generated the VirgoolInformal dataset to evaluate Persian speech recognition models used for forced alignment, extending over 5 hours of audio. The datasets are supported by a fully transparent, MIT-licensed pipeline, a testament to innovation in the field. It includes unique tools for sentence tokenization, bounded audio segmentation, and a novel forced alignment method. This alignment technique is specifically designed for low-resource languages, addressing a crucial need in the field. With this dataset, we trained a Tacotron2-based TTS model, achieving a Mean Opinion Score (MOS) of 3.76, which is remarkably close to the MOS of 3.86 for the utterances generated by the same vocoder and natural spectrogram, and the MOS of 4.01 for the natural waveform, demonstrating the exceptional quality and effectiveness of the corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1