声源定位的分析类增量学习与隐私保护

Xinyuan Qian, Xianghu Yue, Jiadong Wang, Huiping Zhuang, Haizhou Li
{"title":"声源定位的分析类增量学习与隐私保护","authors":"Xinyuan Qian, Xianghu Yue, Jiadong Wang, Huiping Zhuang, Haizhou Li","doi":"arxiv-2409.07224","DOIUrl":null,"url":null,"abstract":"Sound Source Localization (SSL) enabling technology for applications such as\nsurveillance and robotics. While traditional Signal Processing (SP)-based SSL\nmethods provide analytic solutions under specific signal and noise assumptions,\nrecent Deep Learning (DL)-based methods have significantly outperformed them.\nHowever, their success depends on extensive training data and substantial\ncomputational resources. Moreover, they often rely on large-scale annotated\nspatial data and may struggle when adapting to evolving sound classes. To\nmitigate these challenges, we propose a novel Class Incremental Learning (CIL)\napproach, termed SSL-CIL, which avoids serious accuracy degradation due to\ncatastrophic forgetting by incrementally updating the DL-based SSL model\nthrough a closed-form analytic solution. In particular, data privacy is ensured\nsince the learning process does not revisit any historical data\n(exemplar-free), which is more suitable for smart home scenarios. Empirical\nresults in the public SSLR dataset demonstrate the superior performance of our\nproposal, achieving a localization accuracy of 90.9%, surpassing other\ncompetitive methods.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic Class Incremental Learning for Sound Source Localization with Privacy Protection\",\"authors\":\"Xinyuan Qian, Xianghu Yue, Jiadong Wang, Huiping Zhuang, Haizhou Li\",\"doi\":\"arxiv-2409.07224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sound Source Localization (SSL) enabling technology for applications such as\\nsurveillance and robotics. While traditional Signal Processing (SP)-based SSL\\nmethods provide analytic solutions under specific signal and noise assumptions,\\nrecent Deep Learning (DL)-based methods have significantly outperformed them.\\nHowever, their success depends on extensive training data and substantial\\ncomputational resources. Moreover, they often rely on large-scale annotated\\nspatial data and may struggle when adapting to evolving sound classes. To\\nmitigate these challenges, we propose a novel Class Incremental Learning (CIL)\\napproach, termed SSL-CIL, which avoids serious accuracy degradation due to\\ncatastrophic forgetting by incrementally updating the DL-based SSL model\\nthrough a closed-form analytic solution. In particular, data privacy is ensured\\nsince the learning process does not revisit any historical data\\n(exemplar-free), which is more suitable for smart home scenarios. Empirical\\nresults in the public SSLR dataset demonstrate the superior performance of our\\nproposal, achieving a localization accuracy of 90.9%, surpassing other\\ncompetitive methods.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

声源定位(SSL)技术使监控和机器人等应用成为可能。传统的基于信号处理(SP)的声源定位方法能在特定信号和噪声假设条件下提供分析解决方案,而最新的基于深度学习(DL)的方法则明显优于这些方法。此外,它们通常依赖于大规模注释空间数据,在适应不断变化的声音类别时可能会遇到困难。为了应对这些挑战,我们提出了一种新颖的类增量学习(CIL)方法,称为 SSL-CIL,它通过闭式分析解决方案增量更新基于 DL 的 SSL 模型,避免了因灾难性遗忘而导致的严重准确度下降。特别是,由于学习过程不会重新访问任何历史数据(无范例),因此数据隐私得到了保证,这更适合智能家居场景。公共 SSLR 数据集的实证结果证明了我们的方案性能优越,定位精度达到 90.9%,超过了其他竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analytic Class Incremental Learning for Sound Source Localization with Privacy Protection
Sound Source Localization (SSL) enabling technology for applications such as surveillance and robotics. While traditional Signal Processing (SP)-based SSL methods provide analytic solutions under specific signal and noise assumptions, recent Deep Learning (DL)-based methods have significantly outperformed them. However, their success depends on extensive training data and substantial computational resources. Moreover, they often rely on large-scale annotated spatial data and may struggle when adapting to evolving sound classes. To mitigate these challenges, we propose a novel Class Incremental Learning (CIL) approach, termed SSL-CIL, which avoids serious accuracy degradation due to catastrophic forgetting by incrementally updating the DL-based SSL model through a closed-form analytic solution. In particular, data privacy is ensured since the learning process does not revisit any historical data (exemplar-free), which is more suitable for smart home scenarios. Empirical results in the public SSLR dataset demonstrate the superior performance of our proposal, achieving a localization accuracy of 90.9%, surpassing other competitive methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1