Faetar 基准:资源极度匮乏语言的语音识别

Michael Ong, Sean Robertson, Leo Peckham, Alba Jorquera Jimenez de Aberasturi, Paula Arkhangorodsky, Robin Huo, Aman Sakhardande, Mark Hallap, Naomi Nagy, Ewan Dunbar
{"title":"Faetar 基准:资源极度匮乏语言的语音识别","authors":"Michael Ong, Sean Robertson, Leo Peckham, Alba Jorquera Jimenez de Aberasturi, Paula Arkhangorodsky, Robin Huo, Aman Sakhardande, Mark Hallap, Naomi Nagy, Ewan Dunbar","doi":"arxiv-2409.08103","DOIUrl":null,"url":null,"abstract":"We introduce the Faetar Automatic Speech Recognition Benchmark, a benchmark\ncorpus designed to push the limits of current approaches to low-resource speech\nrecognition. Faetar, a Franco-Proven\\c{c}al variety spoken primarily in Italy,\nhas no standard orthography, has virtually no existing textual or speech\nresources other than what is included in the benchmark, and is quite different\nfrom other forms of Franco-Proven\\c{c}al. The corpus comes from field\nrecordings, most of which are noisy, for which only 5 hrs have matching\ntranscriptions, and for which forced alignment is of variable quality. The\ncorpus contains an additional 20 hrs of unlabelled speech. We report baseline\nresults from state-of-the-art multilingual speech foundation models with a best\nphone error rate of 30.4%, using a pipeline that continues pre-training on the\nfoundation model using the unlabelled set.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Faetar Benchmark: Speech Recognition in a Very Under-Resourced Language\",\"authors\":\"Michael Ong, Sean Robertson, Leo Peckham, Alba Jorquera Jimenez de Aberasturi, Paula Arkhangorodsky, Robin Huo, Aman Sakhardande, Mark Hallap, Naomi Nagy, Ewan Dunbar\",\"doi\":\"arxiv-2409.08103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the Faetar Automatic Speech Recognition Benchmark, a benchmark\\ncorpus designed to push the limits of current approaches to low-resource speech\\nrecognition. Faetar, a Franco-Proven\\\\c{c}al variety spoken primarily in Italy,\\nhas no standard orthography, has virtually no existing textual or speech\\nresources other than what is included in the benchmark, and is quite different\\nfrom other forms of Franco-Proven\\\\c{c}al. The corpus comes from field\\nrecordings, most of which are noisy, for which only 5 hrs have matching\\ntranscriptions, and for which forced alignment is of variable quality. The\\ncorpus contains an additional 20 hrs of unlabelled speech. We report baseline\\nresults from state-of-the-art multilingual speech foundation models with a best\\nphone error rate of 30.4%, using a pipeline that continues pre-training on the\\nfoundation model using the unlabelled set.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了 Faetar 自动语音识别基准,这是一个旨在挑战当前低资源语音识别方法极限的基准语料库。Faetar是一种主要在意大利使用的法语-普罗旺斯语,它没有标准的正字法,除了基准语料之外几乎没有其他现存的文本或语音资源,而且与其他形式的法语-普罗旺斯语有很大不同。该语料库来自田野记录,其中大部分都有噪声,只有 5 小时有匹配的译文,强制对齐的质量也参差不齐。该语料库还包含 20 小时的未标记语音。我们报告了最先进的多语言语音基础模型的基准结果,最佳语音错误率为 30.4%,使用的方法是继续使用未标记集对基础模型进行预训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Faetar Benchmark: Speech Recognition in a Very Under-Resourced Language
We introduce the Faetar Automatic Speech Recognition Benchmark, a benchmark corpus designed to push the limits of current approaches to low-resource speech recognition. Faetar, a Franco-Proven\c{c}al variety spoken primarily in Italy, has no standard orthography, has virtually no existing textual or speech resources other than what is included in the benchmark, and is quite different from other forms of Franco-Proven\c{c}al. The corpus comes from field recordings, most of which are noisy, for which only 5 hrs have matching transcriptions, and for which forced alignment is of variable quality. The corpus contains an additional 20 hrs of unlabelled speech. We report baseline results from state-of-the-art multilingual speech foundation models with a best phone error rate of 30.4%, using a pipeline that continues pre-training on the foundation model using the unlabelled set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1