绘画与音乐的桥梁 -- 通过绘画探索基于情感的音乐创作

Tanisha Hisariya, Huan Zhang, Jinhua Liang
{"title":"绘画与音乐的桥梁 -- 通过绘画探索基于情感的音乐创作","authors":"Tanisha Hisariya, Huan Zhang, Jinhua Liang","doi":"arxiv-2409.07827","DOIUrl":null,"url":null,"abstract":"Rapid advancements in artificial intelligence have significantly enhanced\ngenerative tasks involving music and images, employing both unimodal and\nmultimodal approaches. This research develops a model capable of generating\nmusic that resonates with the emotions depicted in visual arts, integrating\nemotion labeling, image captioning, and language models to transform visual\ninputs into musical compositions. Addressing the scarcity of aligned art and\nmusic data, we curated the Emotion Painting Music Dataset, pairing paintings\nwith corresponding music for effective training and evaluation. Our dual-stage\nframework converts images to text descriptions of emotional content and then\ntransforms these descriptions into music, facilitating efficient learning with\nminimal data. Performance is evaluated using metrics such as Fr\\'echet Audio\nDistance (FAD), Total Harmonic Distortion (THD), Inception Score (IS), and KL\ndivergence, with audio-emotion text similarity confirmed by the pre-trained\nCLAP model to demonstrate high alignment between generated music and text. This\nsynthesis tool bridges visual art and music, enhancing accessibility for the\nvisually impaired and opening avenues in educational and therapeutic\napplications by providing enriched multi-sensory experiences.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging Paintings and Music -- Exploring Emotion based Music Generation through Paintings\",\"authors\":\"Tanisha Hisariya, Huan Zhang, Jinhua Liang\",\"doi\":\"arxiv-2409.07827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid advancements in artificial intelligence have significantly enhanced\\ngenerative tasks involving music and images, employing both unimodal and\\nmultimodal approaches. This research develops a model capable of generating\\nmusic that resonates with the emotions depicted in visual arts, integrating\\nemotion labeling, image captioning, and language models to transform visual\\ninputs into musical compositions. Addressing the scarcity of aligned art and\\nmusic data, we curated the Emotion Painting Music Dataset, pairing paintings\\nwith corresponding music for effective training and evaluation. Our dual-stage\\nframework converts images to text descriptions of emotional content and then\\ntransforms these descriptions into music, facilitating efficient learning with\\nminimal data. Performance is evaluated using metrics such as Fr\\\\'echet Audio\\nDistance (FAD), Total Harmonic Distortion (THD), Inception Score (IS), and KL\\ndivergence, with audio-emotion text similarity confirmed by the pre-trained\\nCLAP model to demonstrate high alignment between generated music and text. This\\nsynthesis tool bridges visual art and music, enhancing accessibility for the\\nvisually impaired and opening avenues in educational and therapeutic\\napplications by providing enriched multi-sensory experiences.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能的飞速发展极大地增强了涉及音乐和图像的生成任务,并同时采用了单模态和多模态方法。本研究开发了一种能够生成与视觉艺术中描绘的情感产生共鸣的音乐的模型,它整合了情感标签、图像标题和语言模型,将视觉输入转化为音乐作品。为了解决艺术与音乐数据不匹配的问题,我们策划了情感绘画音乐数据集,将绘画与相应的音乐配对,以进行有效的训练和评估。我们的双阶段框架工作将图像转换为情感内容的文本描述,然后将这些描述转换为音乐,从而以最少的数据促进高效学习。性能评估指标包括音频距离(FAD)、总谐波失真(THD)、入门分数(IS)和 KLdivergence,音频-情感文本相似性由预先训练的CLAP 模型确认,以证明生成的音乐和文本之间高度一致。该合成工具是视觉艺术和音乐的桥梁,通过提供丰富的多感官体验,提高了视障人士的可及性,并为教育和治疗应用开辟了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bridging Paintings and Music -- Exploring Emotion based Music Generation through Paintings
Rapid advancements in artificial intelligence have significantly enhanced generative tasks involving music and images, employing both unimodal and multimodal approaches. This research develops a model capable of generating music that resonates with the emotions depicted in visual arts, integrating emotion labeling, image captioning, and language models to transform visual inputs into musical compositions. Addressing the scarcity of aligned art and music data, we curated the Emotion Painting Music Dataset, pairing paintings with corresponding music for effective training and evaluation. Our dual-stage framework converts images to text descriptions of emotional content and then transforms these descriptions into music, facilitating efficient learning with minimal data. Performance is evaluated using metrics such as Fr\'echet Audio Distance (FAD), Total Harmonic Distortion (THD), Inception Score (IS), and KL divergence, with audio-emotion text similarity confirmed by the pre-trained CLAP model to demonstrate high alignment between generated music and text. This synthesis tool bridges visual art and music, enhancing accessibility for the visually impaired and opening avenues in educational and therapeutic applications by providing enriched multi-sensory experiences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1