Ben Boyarko, Sonia Podvin, Barry Greenberg, Steven Arnold, Almudena Maroto Juanes, Rik van der Kant, Lawrence Goldstein, Jeremiah D. Momper, Anne Bang, James Silverman, Howard H. Feldman, Vivian Hook
{"title":"考虑将依非韦伦药物重新用于阿尔茨海默病治疗的挑战与机遇","authors":"Ben Boyarko, Sonia Podvin, Barry Greenberg, Steven Arnold, Almudena Maroto Juanes, Rik van der Kant, Lawrence Goldstein, Jeremiah D. Momper, Anne Bang, James Silverman, Howard H. Feldman, Vivian Hook","doi":"10.1021/acsptsci.4c00229","DOIUrl":null,"url":null,"abstract":"Therapeutic research and development for Alzheimer’s disease (AD) has been an area of intense research to alleviate memory loss and neurodegeneration. There is growing interest in drug repositioning and repurposing strategies for FDA-approved medications as potential candidates that may further advance AD therapeutics. The FDA drug efavirenz has been investigated as a candidate drug for repurposing as an AD medication. The proposed mechanism of action of efavirenz (at low doses) is the activation of the neuron-specific enzyme CYP46A1 that converts excess brain cholesterol into 24-hydroxycholesterol (24-HC) that is exported to the periphery. Efavirenz at a low dose was found to improve memory deficit in the 5XFAD model of AD that was accompanied by elevated 24-HC and reduction in Aβ; furthermore, efavirenz reduced pTau and excess cholesterol levels in human iPSC-derived Alzheimer’s neurons. The low dose of efavirenz used in the AD mouse model to increase 24-HC contrasts with the use of more than 100-fold higher doses of efavirenz for clinical treatment of human immunodeficiency virus (HIV) through inhibition of reverse transcriptase. Low doses of efavirenz may avoid neurotoxic adverse effects that occur at high efavirenz doses used for HIV treatment. This review evaluates the drug properties of efavirenz with respect to its preclinical data on regulating memory deficit, pharmacokinetics, pharmacodynamics, metabolites, and genetic variabilities in drug metabolism as well as its potential adverse effects. These analyses discuss the challenges and questions that should be addressed in future studies to consider the opportunity for low dose efavirenz as a candidate for AD drug development.","PeriodicalId":501473,"journal":{"name":"ACS Pharmacology & Translational Science","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges and Opportunities for Consideration of Efavirenz Drug Repurposing for Alzheimer’s Disease Therapeutics\",\"authors\":\"Ben Boyarko, Sonia Podvin, Barry Greenberg, Steven Arnold, Almudena Maroto Juanes, Rik van der Kant, Lawrence Goldstein, Jeremiah D. Momper, Anne Bang, James Silverman, Howard H. Feldman, Vivian Hook\",\"doi\":\"10.1021/acsptsci.4c00229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Therapeutic research and development for Alzheimer’s disease (AD) has been an area of intense research to alleviate memory loss and neurodegeneration. There is growing interest in drug repositioning and repurposing strategies for FDA-approved medications as potential candidates that may further advance AD therapeutics. The FDA drug efavirenz has been investigated as a candidate drug for repurposing as an AD medication. The proposed mechanism of action of efavirenz (at low doses) is the activation of the neuron-specific enzyme CYP46A1 that converts excess brain cholesterol into 24-hydroxycholesterol (24-HC) that is exported to the periphery. Efavirenz at a low dose was found to improve memory deficit in the 5XFAD model of AD that was accompanied by elevated 24-HC and reduction in Aβ; furthermore, efavirenz reduced pTau and excess cholesterol levels in human iPSC-derived Alzheimer’s neurons. The low dose of efavirenz used in the AD mouse model to increase 24-HC contrasts with the use of more than 100-fold higher doses of efavirenz for clinical treatment of human immunodeficiency virus (HIV) through inhibition of reverse transcriptase. Low doses of efavirenz may avoid neurotoxic adverse effects that occur at high efavirenz doses used for HIV treatment. This review evaluates the drug properties of efavirenz with respect to its preclinical data on regulating memory deficit, pharmacokinetics, pharmacodynamics, metabolites, and genetic variabilities in drug metabolism as well as its potential adverse effects. These analyses discuss the challenges and questions that should be addressed in future studies to consider the opportunity for low dose efavirenz as a candidate for AD drug development.\",\"PeriodicalId\":501473,\"journal\":{\"name\":\"ACS Pharmacology & Translational Science\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology & Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsptsci.4c00229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology & Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Challenges and Opportunities for Consideration of Efavirenz Drug Repurposing for Alzheimer’s Disease Therapeutics
Therapeutic research and development for Alzheimer’s disease (AD) has been an area of intense research to alleviate memory loss and neurodegeneration. There is growing interest in drug repositioning and repurposing strategies for FDA-approved medications as potential candidates that may further advance AD therapeutics. The FDA drug efavirenz has been investigated as a candidate drug for repurposing as an AD medication. The proposed mechanism of action of efavirenz (at low doses) is the activation of the neuron-specific enzyme CYP46A1 that converts excess brain cholesterol into 24-hydroxycholesterol (24-HC) that is exported to the periphery. Efavirenz at a low dose was found to improve memory deficit in the 5XFAD model of AD that was accompanied by elevated 24-HC and reduction in Aβ; furthermore, efavirenz reduced pTau and excess cholesterol levels in human iPSC-derived Alzheimer’s neurons. The low dose of efavirenz used in the AD mouse model to increase 24-HC contrasts with the use of more than 100-fold higher doses of efavirenz for clinical treatment of human immunodeficiency virus (HIV) through inhibition of reverse transcriptase. Low doses of efavirenz may avoid neurotoxic adverse effects that occur at high efavirenz doses used for HIV treatment. This review evaluates the drug properties of efavirenz with respect to its preclinical data on regulating memory deficit, pharmacokinetics, pharmacodynamics, metabolites, and genetic variabilities in drug metabolism as well as its potential adverse effects. These analyses discuss the challenges and questions that should be addressed in future studies to consider the opportunity for low dose efavirenz as a candidate for AD drug development.