Sinem Zeynep Metin, Çağlar Uyulan, Shams Farhad, Türker Tekin Ergüzel, Ömer Türk, Barış Metin, Önder Çerezci, Nevzat Tarhan
{"title":"基于深度学习的人工智能可高精度区分抗药性和应答性抑郁症病例","authors":"Sinem Zeynep Metin, Çağlar Uyulan, Shams Farhad, Türker Tekin Ergüzel, Ömer Türk, Barış Metin, Önder Çerezci, Nevzat Tarhan","doi":"10.1177/15500594241273181","DOIUrl":null,"url":null,"abstract":"Background: Although there are many treatment options available for depression, a large portion of patients with depression are diagnosed with treatment-resistant depression (TRD), which is characterized by an inadequate response to antidepressant treatment. Identifying the TRD population is crucial in terms of saving time and resources in depression treatment. Recently several studies employed various methods on EEG datasets for automatic depression detection or treatment outcome prediction. However, no previous study has used the deep learning (DL) approach and EEG signals for detecting treatment resistance. Method: 77 patients with TRD, 43 patients with non-TRD, and 40 healthy controls were compared using GoogleNet convolutional neural network and DL on EEG data. Additionally, Class Activation Maps (CAMs) acquired from the TRD and non-TRD groups were used to obtain distinctive regions for classification. Results: GoogleNet classified the healthy controls and non-TRD group with 88.43%, the healthy controls and TRD subjects with 89.73%, and the TRD and non-TRD group with 90.05% accuracy. The external validation accuracy for the TRD-non-TRD classification was 73.33%. Finally, the CAM analysis revealed that the TRD group contained dominant features in class detection of deep learning architecture in almost all electrodes. Limitations: Our study is limited by the moderate sample size of clinical groups and the retrospective nature of the study. Conclusion: These findings suggest that EEG-based deep learning can be used to classify treatment resistance in depression and may in the future prove to be a useful tool in psychiatry practice to identify patients who need more vigorous intervention.","PeriodicalId":10682,"journal":{"name":"Clinical EEG and Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Artificial Intelligence Can Differentiate Treatment-Resistant and Responsive Depression Cases with High Accuracy\",\"authors\":\"Sinem Zeynep Metin, Çağlar Uyulan, Shams Farhad, Türker Tekin Ergüzel, Ömer Türk, Barış Metin, Önder Çerezci, Nevzat Tarhan\",\"doi\":\"10.1177/15500594241273181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Although there are many treatment options available for depression, a large portion of patients with depression are diagnosed with treatment-resistant depression (TRD), which is characterized by an inadequate response to antidepressant treatment. Identifying the TRD population is crucial in terms of saving time and resources in depression treatment. Recently several studies employed various methods on EEG datasets for automatic depression detection or treatment outcome prediction. However, no previous study has used the deep learning (DL) approach and EEG signals for detecting treatment resistance. Method: 77 patients with TRD, 43 patients with non-TRD, and 40 healthy controls were compared using GoogleNet convolutional neural network and DL on EEG data. Additionally, Class Activation Maps (CAMs) acquired from the TRD and non-TRD groups were used to obtain distinctive regions for classification. Results: GoogleNet classified the healthy controls and non-TRD group with 88.43%, the healthy controls and TRD subjects with 89.73%, and the TRD and non-TRD group with 90.05% accuracy. The external validation accuracy for the TRD-non-TRD classification was 73.33%. Finally, the CAM analysis revealed that the TRD group contained dominant features in class detection of deep learning architecture in almost all electrodes. Limitations: Our study is limited by the moderate sample size of clinical groups and the retrospective nature of the study. Conclusion: These findings suggest that EEG-based deep learning can be used to classify treatment resistance in depression and may in the future prove to be a useful tool in psychiatry practice to identify patients who need more vigorous intervention.\",\"PeriodicalId\":10682,\"journal\":{\"name\":\"Clinical EEG and Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical EEG and Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15500594241273181\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15500594241273181","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Deep Learning-Based Artificial Intelligence Can Differentiate Treatment-Resistant and Responsive Depression Cases with High Accuracy
Background: Although there are many treatment options available for depression, a large portion of patients with depression are diagnosed with treatment-resistant depression (TRD), which is characterized by an inadequate response to antidepressant treatment. Identifying the TRD population is crucial in terms of saving time and resources in depression treatment. Recently several studies employed various methods on EEG datasets for automatic depression detection or treatment outcome prediction. However, no previous study has used the deep learning (DL) approach and EEG signals for detecting treatment resistance. Method: 77 patients with TRD, 43 patients with non-TRD, and 40 healthy controls were compared using GoogleNet convolutional neural network and DL on EEG data. Additionally, Class Activation Maps (CAMs) acquired from the TRD and non-TRD groups were used to obtain distinctive regions for classification. Results: GoogleNet classified the healthy controls and non-TRD group with 88.43%, the healthy controls and TRD subjects with 89.73%, and the TRD and non-TRD group with 90.05% accuracy. The external validation accuracy for the TRD-non-TRD classification was 73.33%. Finally, the CAM analysis revealed that the TRD group contained dominant features in class detection of deep learning architecture in almost all electrodes. Limitations: Our study is limited by the moderate sample size of clinical groups and the retrospective nature of the study. Conclusion: These findings suggest that EEG-based deep learning can be used to classify treatment resistance in depression and may in the future prove to be a useful tool in psychiatry practice to identify patients who need more vigorous intervention.
期刊介绍:
Clinical EEG and Neuroscience conveys clinically relevant research and development in electroencephalography and neuroscience. Original articles on any aspect of clinical neurophysiology or related work in allied fields are invited for publication.