基于一般失真度标的直方图移动实现可逆数据隐藏

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-09-06 DOI:10.1109/LSP.2024.3456005
Xingyuan Liang;Shijun Xiang
{"title":"基于一般失真度标的直方图移动实现可逆数据隐藏","authors":"Xingyuan Liang;Shijun Xiang","doi":"10.1109/LSP.2024.3456005","DOIUrl":null,"url":null,"abstract":"In reversible data hiding (RDH) community, researchers often embed bits by shifting prediction-error histogram based on the mean-square error metric (MSEM). This will cause more pixel distortion in the smooth areas. Considering that the human eye is more sensitive to the distortion in the smooth areas, in this letter, we propose a new histogram shifting strategy for RDH by referring to the general distortion metric (GDM). With the GDM, data can be embedded by first modifying those pixels in the texture areas. In both theoretical analysis and experimental testing, we have shown that the use of the proposed GDM-based histogram shifting strategy for RDH can further improve the visual quality of marked images in higher SSIM values by comparing with typical MSEM-based histogram shifting methods.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General Distortion Metric Based Histogram Shifting for Reversible Data Hiding\",\"authors\":\"Xingyuan Liang;Shijun Xiang\",\"doi\":\"10.1109/LSP.2024.3456005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In reversible data hiding (RDH) community, researchers often embed bits by shifting prediction-error histogram based on the mean-square error metric (MSEM). This will cause more pixel distortion in the smooth areas. Considering that the human eye is more sensitive to the distortion in the smooth areas, in this letter, we propose a new histogram shifting strategy for RDH by referring to the general distortion metric (GDM). With the GDM, data can be embedded by first modifying those pixels in the texture areas. In both theoretical analysis and experimental testing, we have shown that the use of the proposed GDM-based histogram shifting strategy for RDH can further improve the visual quality of marked images in higher SSIM values by comparing with typical MSEM-based histogram shifting methods.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669077/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669077/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在可逆数据隐藏(RDH)领域,研究人员通常根据均方误差指标(MSEM),通过移动预测误差直方图来嵌入比特。这会导致光滑区域的像素失真更多。考虑到人眼对平滑区域的失真更为敏感,我们在这封信中提出了一种针对 RDH 的新直方图移动策略,即参照一般失真指标(GDM)。利用 GDM,可以通过首先修改纹理区域的像素来嵌入数据。在理论分析和实验测试中,我们都表明,与典型的基于 MSEM 的直方图移动方法相比,使用所提出的基于 GDM 的 RDH 直方图移动策略可以进一步提高标记图像在较高 SSIM 值下的视觉质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
General Distortion Metric Based Histogram Shifting for Reversible Data Hiding
In reversible data hiding (RDH) community, researchers often embed bits by shifting prediction-error histogram based on the mean-square error metric (MSEM). This will cause more pixel distortion in the smooth areas. Considering that the human eye is more sensitive to the distortion in the smooth areas, in this letter, we propose a new histogram shifting strategy for RDH by referring to the general distortion metric (GDM). With the GDM, data can be embedded by first modifying those pixels in the texture areas. In both theoretical analysis and experimental testing, we have shown that the use of the proposed GDM-based histogram shifting strategy for RDH can further improve the visual quality of marked images in higher SSIM values by comparing with typical MSEM-based histogram shifting methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
KFA: Keyword Feature Augmentation for Open Set Keyword Spotting RFI-Aware and Low-Cost Maximum Likelihood Imaging for High-Sensitivity Radio Telescopes Audio Mamba: Bidirectional State Space Model for Audio Representation Learning System-Informed Neural Network for Frequency Detection Order Estimation of Linear-Phase FIR Filters for DAC Equalization in Multiple Nyquist Bands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1