{"title":"凸面结构上液滴的撞击动力学:利用凸面撞击的最大扩散直径模型进行的实验研究","authors":"Nuri Erdem Ersoy, Fenghao Shi, David L. S. Hung","doi":"10.1007/s00348-024-03865-2","DOIUrl":null,"url":null,"abstract":"<div><p>Droplet impact is a common phenomenon in daily life and various industrial applications. Previous research shows that surface geometry significantly influences impact outcomes. However, there is a gap in systematic research on how convex structures, similar in size to the droplet, influence impact behaviors. To address this, our study focused on producing various targets with different convexity to investigate the morphological evolution of droplet impact. Using high-speed imaging techniques, we examined these impacts with Weber numbers ranging from 5 to 346. The experimental results show that dry convex surfaces increase the maximum spreading diameter of droplets by altering liquid mass redistribution. Reduced air entrapment diminishes the circumferential instability of deformed droplets on these surfaces, as evidenced by fewer fingers formed. This study also proposes a hybrid model to predict the maximum spreading diameter on convex surfaces using the energy conservation method. Benefiting from models for flat surfaces, this new approach accounts for convex surface impacts, which alter the impact characteristics according to the convexity of the impact geometry. The model assumes that the droplet at its maximum spreading diameter resembles either a disc or a rim. Notably, the rim assumption was quite evident in several convex surface impacts, presenting a donut-shaped expansion. These results are combined through weighted summation The hybrid model’s predictions show a superior agreement with the experimental data compared to existing models. Additionally, the model’s weighting factors provide insights into the distribution of liquid mass between the central film and the surrounding rim.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact dynamics of droplets on convex structures: an experimental study with a maximum spreading diameter model for convex surface impacts\",\"authors\":\"Nuri Erdem Ersoy, Fenghao Shi, David L. S. Hung\",\"doi\":\"10.1007/s00348-024-03865-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Droplet impact is a common phenomenon in daily life and various industrial applications. Previous research shows that surface geometry significantly influences impact outcomes. However, there is a gap in systematic research on how convex structures, similar in size to the droplet, influence impact behaviors. To address this, our study focused on producing various targets with different convexity to investigate the morphological evolution of droplet impact. Using high-speed imaging techniques, we examined these impacts with Weber numbers ranging from 5 to 346. The experimental results show that dry convex surfaces increase the maximum spreading diameter of droplets by altering liquid mass redistribution. Reduced air entrapment diminishes the circumferential instability of deformed droplets on these surfaces, as evidenced by fewer fingers formed. This study also proposes a hybrid model to predict the maximum spreading diameter on convex surfaces using the energy conservation method. Benefiting from models for flat surfaces, this new approach accounts for convex surface impacts, which alter the impact characteristics according to the convexity of the impact geometry. The model assumes that the droplet at its maximum spreading diameter resembles either a disc or a rim. Notably, the rim assumption was quite evident in several convex surface impacts, presenting a donut-shaped expansion. These results are combined through weighted summation The hybrid model’s predictions show a superior agreement with the experimental data compared to existing models. Additionally, the model’s weighting factors provide insights into the distribution of liquid mass between the central film and the surrounding rim.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"65 8\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-024-03865-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03865-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Impact dynamics of droplets on convex structures: an experimental study with a maximum spreading diameter model for convex surface impacts
Droplet impact is a common phenomenon in daily life and various industrial applications. Previous research shows that surface geometry significantly influences impact outcomes. However, there is a gap in systematic research on how convex structures, similar in size to the droplet, influence impact behaviors. To address this, our study focused on producing various targets with different convexity to investigate the morphological evolution of droplet impact. Using high-speed imaging techniques, we examined these impacts with Weber numbers ranging from 5 to 346. The experimental results show that dry convex surfaces increase the maximum spreading diameter of droplets by altering liquid mass redistribution. Reduced air entrapment diminishes the circumferential instability of deformed droplets on these surfaces, as evidenced by fewer fingers formed. This study also proposes a hybrid model to predict the maximum spreading diameter on convex surfaces using the energy conservation method. Benefiting from models for flat surfaces, this new approach accounts for convex surface impacts, which alter the impact characteristics according to the convexity of the impact geometry. The model assumes that the droplet at its maximum spreading diameter resembles either a disc or a rim. Notably, the rim assumption was quite evident in several convex surface impacts, presenting a donut-shaped expansion. These results are combined through weighted summation The hybrid model’s predictions show a superior agreement with the experimental data compared to existing models. Additionally, the model’s weighting factors provide insights into the distribution of liquid mass between the central film and the surrounding rim.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.