{"title":"如何借助可影响区域测量研究人员的影响?利用距离几何学的具体方法","authors":"Beniamino Cappelletti-Montano, Gianmarco Cherchi, Benedetto Manca, Stefano Montaldo, Monica Musio","doi":"10.1007/s00357-024-09490-2","DOIUrl":null,"url":null,"abstract":"<p>Assuming that the subject of each scientific publication can be identified by one or more classification entities, we address the problem of determining a similarity function (distance) between classification entities based on how often two classification entities are used in the same publication. This similarity function is then used to obtain a representation of the classification entities as points of an Euclidean space of a suitable dimension by means of optimization and dimensionality reduction algorithms. This procedure allows us also to represent the researchers as points in the same Euclidean space and to determine the distance between researchers according to their scientific production. As a case study, we consider as classification entities the codes of the American Mathematical Society Classification System.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"56 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to Measure the Researcher Impact with the Aid of its Impactable Area: A Concrete Approach Using Distance Geometry\",\"authors\":\"Beniamino Cappelletti-Montano, Gianmarco Cherchi, Benedetto Manca, Stefano Montaldo, Monica Musio\",\"doi\":\"10.1007/s00357-024-09490-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Assuming that the subject of each scientific publication can be identified by one or more classification entities, we address the problem of determining a similarity function (distance) between classification entities based on how often two classification entities are used in the same publication. This similarity function is then used to obtain a representation of the classification entities as points of an Euclidean space of a suitable dimension by means of optimization and dimensionality reduction algorithms. This procedure allows us also to represent the researchers as points in the same Euclidean space and to determine the distance between researchers according to their scientific production. As a case study, we consider as classification entities the codes of the American Mathematical Society Classification System.</p>\",\"PeriodicalId\":50241,\"journal\":{\"name\":\"Journal of Classification\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00357-024-09490-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-024-09490-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
How to Measure the Researcher Impact with the Aid of its Impactable Area: A Concrete Approach Using Distance Geometry
Assuming that the subject of each scientific publication can be identified by one or more classification entities, we address the problem of determining a similarity function (distance) between classification entities based on how often two classification entities are used in the same publication. This similarity function is then used to obtain a representation of the classification entities as points of an Euclidean space of a suitable dimension by means of optimization and dimensionality reduction algorithms. This procedure allows us also to represent the researchers as points in the same Euclidean space and to determine the distance between researchers according to their scientific production. As a case study, we consider as classification entities the codes of the American Mathematical Society Classification System.
期刊介绍:
To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.