基于主题覆盖范围的可持续发展目标标签系统比较

Li Li, Yu Zhao, Zhesi Shen
{"title":"基于主题覆盖范围的可持续发展目标标签系统比较","authors":"Li Li, Yu Zhao, Zhesi Shen","doi":"arxiv-2408.13455","DOIUrl":null,"url":null,"abstract":"With the growing importance of sustainable development goals (SDGs), various\nlabeling systems have emerged for effective monitoring and evaluation. This\nstudy assesses six labeling systems across 1.85 million documents at both paper\nlevel and topic level. Our findings indicate that the SDGO and SDSN systems are\nmore aggressive, while systems such as Auckland, Aurora, SIRIS, and Elsevier\nexhibit significant topic consistency, with similarity scores exceeding 0.75\nfor most SDGs. However, similarities at the paper level generally fall short,\nparticularly for specific SDGs like SDG 10. We highlight the crucial role of\ncontextual information in keyword-based labeling systems, noting that\noverlooking context can introduce bias in the retrieval of papers (e.g.,\nvariations in \"migration\" between biomedical and geographical contexts). These\nresults reveal substantial discrepancies among SDG labeling systems,\nemphasizing the need for improved methodologies to enhance the accuracy and\nrelevance of SDG evaluations.","PeriodicalId":501285,"journal":{"name":"arXiv - CS - Digital Libraries","volume":"167 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Sustainable Development Goals Labeling Systems based on Topic Coverage\",\"authors\":\"Li Li, Yu Zhao, Zhesi Shen\",\"doi\":\"arxiv-2408.13455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing importance of sustainable development goals (SDGs), various\\nlabeling systems have emerged for effective monitoring and evaluation. This\\nstudy assesses six labeling systems across 1.85 million documents at both paper\\nlevel and topic level. Our findings indicate that the SDGO and SDSN systems are\\nmore aggressive, while systems such as Auckland, Aurora, SIRIS, and Elsevier\\nexhibit significant topic consistency, with similarity scores exceeding 0.75\\nfor most SDGs. However, similarities at the paper level generally fall short,\\nparticularly for specific SDGs like SDG 10. We highlight the crucial role of\\ncontextual information in keyword-based labeling systems, noting that\\noverlooking context can introduce bias in the retrieval of papers (e.g.,\\nvariations in \\\"migration\\\" between biomedical and geographical contexts). These\\nresults reveal substantial discrepancies among SDG labeling systems,\\nemphasizing the need for improved methodologies to enhance the accuracy and\\nrelevance of SDG evaluations.\",\"PeriodicalId\":501285,\"journal\":{\"name\":\"arXiv - CS - Digital Libraries\",\"volume\":\"167 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着可持续发展目标(SDGs)的重要性与日俱增,出现了各种标签系统来进行有效的监测和评估。本研究对 185 万份文档中的六种标签系统进行了纸张和主题层面的评估。我们的研究结果表明,SDGO 和 SDSN 系统更具侵略性,而 Auckland、Aurora、SIRIS 和 Elseviere 等系统则表现出显著的主题一致性,大多数 SDG 的相似度得分都超过了 0.75。然而,论文层面的相似性一般都不高,尤其是像 SDG 10 这样的特定 SDG。我们强调了上下文信息在基于关键词的标注系统中的关键作用,并指出忽略上下文会在检索论文时产生偏差(例如,生物医学和地理上下文之间的 "迁移 "差异)。这些结果揭示了可持续发展目标标注系统之间的巨大差异,强调了改进方法以提高可持续发展目标评估的准确性和相关性的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Sustainable Development Goals Labeling Systems based on Topic Coverage
With the growing importance of sustainable development goals (SDGs), various labeling systems have emerged for effective monitoring and evaluation. This study assesses six labeling systems across 1.85 million documents at both paper level and topic level. Our findings indicate that the SDGO and SDSN systems are more aggressive, while systems such as Auckland, Aurora, SIRIS, and Elsevier exhibit significant topic consistency, with similarity scores exceeding 0.75 for most SDGs. However, similarities at the paper level generally fall short, particularly for specific SDGs like SDG 10. We highlight the crucial role of contextual information in keyword-based labeling systems, noting that overlooking context can introduce bias in the retrieval of papers (e.g., variations in "migration" between biomedical and geographical contexts). These results reveal substantial discrepancies among SDG labeling systems, emphasizing the need for improved methodologies to enhance the accuracy and relevance of SDG evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Publishing Instincts: An Exploration-Exploitation Framework for Studying Academic Publishing Behavior and "Home Venues" Research Citations Building Trust in Wikipedia Evaluating the Linguistic Coverage of OpenAlex: An Assessment of Metadata Accuracy and Completeness Towards understanding evolution of science through language model series Ensuring Adherence to Standards in Experiment-Related Metadata Entered Via Spreadsheets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1