希腊纸质古籍计算年代误差分析新框架

Giuseppe De Gregorio, Lavinia Ferretti, Rodrigo C. G. Pena, Isabelle Marthot-Santaniello, Maria Konstantinidou, John Pavlopoulos
{"title":"希腊纸质古籍计算年代误差分析新框架","authors":"Giuseppe De Gregorio, Lavinia Ferretti, Rodrigo C. G. Pena, Isabelle Marthot-Santaniello, Maria Konstantinidou, John Pavlopoulos","doi":"arxiv-2408.07779","DOIUrl":null,"url":null,"abstract":"The study of Greek papyri from ancient Egypt is fundamental for understanding\nGraeco-Roman Antiquity, offering insights into various aspects of ancient\nculture and textual production. Palaeography, traditionally used for dating\nthese manuscripts, relies on identifying chronologically relevant features in\nhandwriting styles yet lacks a unified methodology, resulting in subjective\ninterpretations and inconsistencies among experts. Recent advances in digital\npalaeography, which leverage artificial intelligence (AI) algorithms, have\nintroduced new avenues for dating ancient documents. This paper presents a\ncomparative analysis between an AI-based computational dating model and human\nexpert palaeographers, using a novel dataset named Hell-Date comprising\nsecurely fine-grained dated Greek papyri from the Hellenistic period. The\nmethodology involves training a convolutional neural network on visual inputs\nfrom Hell-Date to predict precise dates of papyri. In addition, experts provide\npalaeographic dating for comparison. To compare, we developed a new framework\nfor error analysis that reflects the inherent imprecision of the palaeographic\ndating method. The results indicate that the computational model achieves\nperformance comparable to that of human experts. These elements will help\nassess on a more solid basis future developments of computational algorithms to\ndate Greek papyri.","PeriodicalId":501285,"journal":{"name":"arXiv - CS - Digital Libraries","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Framework for Error Analysis in Computational Paleographic Dating of Greek Papyri\",\"authors\":\"Giuseppe De Gregorio, Lavinia Ferretti, Rodrigo C. G. Pena, Isabelle Marthot-Santaniello, Maria Konstantinidou, John Pavlopoulos\",\"doi\":\"arxiv-2408.07779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of Greek papyri from ancient Egypt is fundamental for understanding\\nGraeco-Roman Antiquity, offering insights into various aspects of ancient\\nculture and textual production. Palaeography, traditionally used for dating\\nthese manuscripts, relies on identifying chronologically relevant features in\\nhandwriting styles yet lacks a unified methodology, resulting in subjective\\ninterpretations and inconsistencies among experts. Recent advances in digital\\npalaeography, which leverage artificial intelligence (AI) algorithms, have\\nintroduced new avenues for dating ancient documents. This paper presents a\\ncomparative analysis between an AI-based computational dating model and human\\nexpert palaeographers, using a novel dataset named Hell-Date comprising\\nsecurely fine-grained dated Greek papyri from the Hellenistic period. The\\nmethodology involves training a convolutional neural network on visual inputs\\nfrom Hell-Date to predict precise dates of papyri. In addition, experts provide\\npalaeographic dating for comparison. To compare, we developed a new framework\\nfor error analysis that reflects the inherent imprecision of the palaeographic\\ndating method. The results indicate that the computational model achieves\\nperformance comparable to that of human experts. These elements will help\\nassess on a more solid basis future developments of computational algorithms to\\ndate Greek papyri.\",\"PeriodicalId\":501285,\"journal\":{\"name\":\"arXiv - CS - Digital Libraries\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究古埃及的希腊纸莎草纸是了解古希腊罗马古代的基础,可以深入了解古代文化和文字制作的各个方面。传统上用于确定这些手稿年代的古文字学依赖于识别手写风格中与年代相关的特征,但缺乏统一的方法,导致专家之间的主观解释和不一致。数字考古学的最新进展利用人工智能(AI)算法,为确定古代文献的年代提供了新的途径。本文利用一个名为 Hell-Date 的新数据集,对基于人工智能的计算年代模型和人类古文字学专家进行了比较分析,该数据集由希腊化时期的希腊纸莎草纸组成,具有可靠的细粒度年代。该方法包括对来自 Hell-Date 的视觉输入进行卷积神经网络训练,以预测纸莎草纸的精确日期。此外,专家们还提供了古文字学的年代,以供比较。为了进行比较,我们开发了一个新的误差分析框架,以反映古文字学定年方法固有的不精确性。结果表明,计算模型的性能可与人类专家相媲美。这些要素将有助于在更坚实的基础上评估未来希腊纸莎草纸年代计算算法的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Framework for Error Analysis in Computational Paleographic Dating of Greek Papyri
The study of Greek papyri from ancient Egypt is fundamental for understanding Graeco-Roman Antiquity, offering insights into various aspects of ancient culture and textual production. Palaeography, traditionally used for dating these manuscripts, relies on identifying chronologically relevant features in handwriting styles yet lacks a unified methodology, resulting in subjective interpretations and inconsistencies among experts. Recent advances in digital palaeography, which leverage artificial intelligence (AI) algorithms, have introduced new avenues for dating ancient documents. This paper presents a comparative analysis between an AI-based computational dating model and human expert palaeographers, using a novel dataset named Hell-Date comprising securely fine-grained dated Greek papyri from the Hellenistic period. The methodology involves training a convolutional neural network on visual inputs from Hell-Date to predict precise dates of papyri. In addition, experts provide palaeographic dating for comparison. To compare, we developed a new framework for error analysis that reflects the inherent imprecision of the palaeographic dating method. The results indicate that the computational model achieves performance comparable to that of human experts. These elements will help assess on a more solid basis future developments of computational algorithms to date Greek papyri.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Publishing Instincts: An Exploration-Exploitation Framework for Studying Academic Publishing Behavior and "Home Venues" Research Citations Building Trust in Wikipedia Evaluating the Linguistic Coverage of OpenAlex: An Assessment of Metadata Accuracy and Completeness Towards understanding evolution of science through language model series Ensuring Adherence to Standards in Experiment-Related Metadata Entered Via Spreadsheets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1