评估大型语言模型的研究质量:不同设置和输入下 ChatGPT 的有效性分析

Mike Thelwall
{"title":"评估大型语言模型的研究质量:不同设置和输入下 ChatGPT 的有效性分析","authors":"Mike Thelwall","doi":"arxiv-2408.06752","DOIUrl":null,"url":null,"abstract":"Evaluating the quality of academic journal articles is a time consuming but\ncritical task for national research evaluation exercises, appointments and\npromotion. It is therefore important to investigate whether Large Language\nModels (LLMs) can play a role in this process. This article assesses which\nChatGPT inputs (full text without tables, figures and references; title and\nabstract; title only) produce better quality score estimates, and the extent to\nwhich scores are affected by ChatGPT models and system prompts. The results\nshow that the optimal input is the article title and abstract, with average\nChatGPT scores based on these (30 iterations on a dataset of 51 papers)\ncorrelating at 0.67 with human scores, the highest ever reported. ChatGPT 4o is\nslightly better than 3.5-turbo (0.66), and 4o-mini (0.66). The results suggest\nthat article full texts might confuse LLM research quality evaluations, even\nthough complex system instructions for the task are more effective than simple\nones. Thus, whilst abstracts contain insufficient information for a thorough\nassessment of rigour, they may contain strong pointers about originality and\nsignificance. Finally, linear regression can be used to convert the model\nscores into the human scale scores, which is 31% more accurate than guessing.","PeriodicalId":501285,"journal":{"name":"arXiv - CS - Digital Libraries","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Research Quality with Large Language Models: An Analysis of ChatGPT's Effectiveness with Different Settings and Inputs\",\"authors\":\"Mike Thelwall\",\"doi\":\"arxiv-2408.06752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluating the quality of academic journal articles is a time consuming but\\ncritical task for national research evaluation exercises, appointments and\\npromotion. It is therefore important to investigate whether Large Language\\nModels (LLMs) can play a role in this process. This article assesses which\\nChatGPT inputs (full text without tables, figures and references; title and\\nabstract; title only) produce better quality score estimates, and the extent to\\nwhich scores are affected by ChatGPT models and system prompts. The results\\nshow that the optimal input is the article title and abstract, with average\\nChatGPT scores based on these (30 iterations on a dataset of 51 papers)\\ncorrelating at 0.67 with human scores, the highest ever reported. ChatGPT 4o is\\nslightly better than 3.5-turbo (0.66), and 4o-mini (0.66). The results suggest\\nthat article full texts might confuse LLM research quality evaluations, even\\nthough complex system instructions for the task are more effective than simple\\nones. Thus, whilst abstracts contain insufficient information for a thorough\\nassessment of rigour, they may contain strong pointers about originality and\\nsignificance. Finally, linear regression can be used to convert the model\\nscores into the human scale scores, which is 31% more accurate than guessing.\",\"PeriodicalId\":501285,\"journal\":{\"name\":\"arXiv - CS - Digital Libraries\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

评估学术期刊文章的质量是一项耗时但对国家研究评估工作、任命和晋升至关重要的任务。因此,研究大型语言模型(LLM)能否在这一过程中发挥作用非常重要。本文评估了哪些 ChatGPT 输入(不含表格、数字和参考文献的全文;标题和摘要;仅标题)能产生更好的质量分数估计值,以及分数受 ChatGPT 模型和系统提示影响的程度。结果表明,最佳输入是文章标题和摘要,基于标题和摘要的平均 ChatGPT 分数(在 51 篇论文的数据集上迭代 30 次)与人类分数的相关性为 0.67,是有报道以来最高的。ChatGPT 4o略优于3.5-turbo(0.66)和4o-mini(0.66)。结果表明,尽管复杂的任务系统说明比简单的说明更有效,但文章全文可能会混淆 LLM 研究质量评价。因此,虽然摘要中包含的信息不足以对严谨性进行全面评估,但它们可能包含有关原创性和重要性的有力提示。最后,线性回归可用于将模型分数转换为人类量表分数,其准确性比猜测高出 31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating Research Quality with Large Language Models: An Analysis of ChatGPT's Effectiveness with Different Settings and Inputs
Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises, appointments and promotion. It is therefore important to investigate whether Large Language Models (LLMs) can play a role in this process. This article assesses which ChatGPT inputs (full text without tables, figures and references; title and abstract; title only) produce better quality score estimates, and the extent to which scores are affected by ChatGPT models and system prompts. The results show that the optimal input is the article title and abstract, with average ChatGPT scores based on these (30 iterations on a dataset of 51 papers) correlating at 0.67 with human scores, the highest ever reported. ChatGPT 4o is slightly better than 3.5-turbo (0.66), and 4o-mini (0.66). The results suggest that article full texts might confuse LLM research quality evaluations, even though complex system instructions for the task are more effective than simple ones. Thus, whilst abstracts contain insufficient information for a thorough assessment of rigour, they may contain strong pointers about originality and significance. Finally, linear regression can be used to convert the model scores into the human scale scores, which is 31% more accurate than guessing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Publishing Instincts: An Exploration-Exploitation Framework for Studying Academic Publishing Behavior and "Home Venues" Research Citations Building Trust in Wikipedia Evaluating the Linguistic Coverage of OpenAlex: An Assessment of Metadata Accuracy and Completeness Towards understanding evolution of science through language model series Ensuring Adherence to Standards in Experiment-Related Metadata Entered Via Spreadsheets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1