声场空间重建的最佳传感器位置

IF 1.7 3区 计算机科学 Q2 ACOUSTICS Eurasip Journal on Audio Speech and Music Processing Pub Date : 2024-08-17 DOI:10.1186/s13636-024-00364-4
Samuel A. Verburg, Filip Elvander, Toon van Waterschoot, Efren Fernandez-Grande
{"title":"声场空间重建的最佳传感器位置","authors":"Samuel A. Verburg, Filip Elvander, Toon van Waterschoot, Efren Fernandez-Grande","doi":"10.1186/s13636-024-00364-4","DOIUrl":null,"url":null,"abstract":"The estimation sound fields over space is of interest in sound field control and analysis, spatial audio, room acoustics and virtual reality. Sound fields can be estimated from a number of measurements distributed over space yet this remains a challenging problem due to the large experimental effort required. In this work we investigate sensor distributions that are optimal to estimate sound fields. Such optimization is valuable as it can greatly reduce the number of measurements required. The sensor positions are optimized with respect to the parameters describing a sound field, or the pressure reconstructed at the area of interest, by finding the positions that minimize the Bayesian Cramér-Rao bound (BCRB). The optimized distributions are investigated in a numerical study as well as with measured room impulse responses. We observe a reduction in the number of measurements of approximately 50% when the sensor positions are optimized for reconstructing the sound field when compared with random distributions. The results indicate that optimizing the sensors positions is also valuable when the vector of parameters is sparse, specially compared with random sensor distributions, which are often adopted in sparse array processing in acoustics.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":"425 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal sensor placement for the spatial reconstruction of sound fields\",\"authors\":\"Samuel A. Verburg, Filip Elvander, Toon van Waterschoot, Efren Fernandez-Grande\",\"doi\":\"10.1186/s13636-024-00364-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation sound fields over space is of interest in sound field control and analysis, spatial audio, room acoustics and virtual reality. Sound fields can be estimated from a number of measurements distributed over space yet this remains a challenging problem due to the large experimental effort required. In this work we investigate sensor distributions that are optimal to estimate sound fields. Such optimization is valuable as it can greatly reduce the number of measurements required. The sensor positions are optimized with respect to the parameters describing a sound field, or the pressure reconstructed at the area of interest, by finding the positions that minimize the Bayesian Cramér-Rao bound (BCRB). The optimized distributions are investigated in a numerical study as well as with measured room impulse responses. We observe a reduction in the number of measurements of approximately 50% when the sensor positions are optimized for reconstructing the sound field when compared with random distributions. The results indicate that optimizing the sensors positions is also valuable when the vector of parameters is sparse, specially compared with random sensor distributions, which are often adopted in sparse array processing in acoustics.\",\"PeriodicalId\":49202,\"journal\":{\"name\":\"Eurasip Journal on Audio Speech and Music Processing\",\"volume\":\"425 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Audio Speech and Music Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13636-024-00364-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Audio Speech and Music Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13636-024-00364-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

空间声场估算是声场控制和分析、空间音频、室内声学和虚拟现实等领域所关注的问题。声场可以通过分布在空间中的大量测量数据进行估算,但由于需要大量的实验工作,这仍然是一个具有挑战性的问题。在这项工作中,我们研究了估算声场的最佳传感器分布。这种优化非常有价值,因为它可以大大减少所需的测量次数。通过寻找贝叶斯克拉梅尔-拉奥约束(BCRB)最小化的位置,对描述声场的参数或在感兴趣区域重建的压力的传感器位置进行优化。我们通过数值研究以及测量的室内脉冲响应对优化后的分布进行了研究。我们发现,与随机分布相比,优化传感器位置以重建声场时,测量次数减少了约 50%。结果表明,与声学稀疏阵列处理中经常采用的随机传感器分布相比,当参数向量稀疏时,优化传感器位置也很有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal sensor placement for the spatial reconstruction of sound fields
The estimation sound fields over space is of interest in sound field control and analysis, spatial audio, room acoustics and virtual reality. Sound fields can be estimated from a number of measurements distributed over space yet this remains a challenging problem due to the large experimental effort required. In this work we investigate sensor distributions that are optimal to estimate sound fields. Such optimization is valuable as it can greatly reduce the number of measurements required. The sensor positions are optimized with respect to the parameters describing a sound field, or the pressure reconstructed at the area of interest, by finding the positions that minimize the Bayesian Cramér-Rao bound (BCRB). The optimized distributions are investigated in a numerical study as well as with measured room impulse responses. We observe a reduction in the number of measurements of approximately 50% when the sensor positions are optimized for reconstructing the sound field when compared with random distributions. The results indicate that optimizing the sensors positions is also valuable when the vector of parameters is sparse, specially compared with random sensor distributions, which are often adopted in sparse array processing in acoustics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eurasip Journal on Audio Speech and Music Processing
Eurasip Journal on Audio Speech and Music Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.10
自引率
4.20%
发文量
0
审稿时长
12 months
期刊介绍: The aim of “EURASIP Journal on Audio, Speech, and Music Processing” is to bring together researchers, scientists and engineers working on the theory and applications of the processing of various audio signals, with a specific focus on speech and music. EURASIP Journal on Audio, Speech, and Music Processing will be an interdisciplinary journal for the dissemination of all basic and applied aspects of speech communication and audio processes.
期刊最新文献
Compression of room impulse responses for compact storage and fast low-latency convolution Guest editorial: AI for computational audition—sound and music processing Physics-constrained adaptive kernel interpolation for region-to-region acoustic transfer function: a Bayesian approach Physics-informed neural network for volumetric sound field reconstruction of speech signals Optimal sensor placement for the spatial reconstruction of sound fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1