Fabrizio Errichiello, Daniele Amato, Mario Penati, Ernesto Di Maio
{"title":"使用 3D 扫描仪测量泡沫密度","authors":"Fabrizio Errichiello, Daniele Amato, Mario Penati, Ernesto Di Maio","doi":"10.1177/0021955x241281880","DOIUrl":null,"url":null,"abstract":"In this work, we used a 3D scanner for the volume measurement of foamed samples, a long-standing problem in the density evaluation of foams. The 3D scanning density measurement method can be selected as an alternative to or in combination with well-established, classical methods that involve the use of instruments like a caliper, a pycnometer, or other devices based on displacement or flotation principles. In particular, the classical methods show some limitations when the foamed sample geometry is irregular, when the polymer is highly hygroscopic, and when it has open porosities. We have tested numerous foamed samples of different sizes, shapes, densities, materials, and morphologies. We utilized different 3D scanner configurations for their volume measurement and compared the results with geometrical and displacement methods, when possible. Results showed that the proposed method is highly accurate, reproducible, and simple, although some specific precautions should be put in place to avoid misinterpretation by the shape-reconstructing software.","PeriodicalId":15236,"journal":{"name":"Journal of Cellular Plastics","volume":"1 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Foam density measurement using a 3D scanner\",\"authors\":\"Fabrizio Errichiello, Daniele Amato, Mario Penati, Ernesto Di Maio\",\"doi\":\"10.1177/0021955x241281880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we used a 3D scanner for the volume measurement of foamed samples, a long-standing problem in the density evaluation of foams. The 3D scanning density measurement method can be selected as an alternative to or in combination with well-established, classical methods that involve the use of instruments like a caliper, a pycnometer, or other devices based on displacement or flotation principles. In particular, the classical methods show some limitations when the foamed sample geometry is irregular, when the polymer is highly hygroscopic, and when it has open porosities. We have tested numerous foamed samples of different sizes, shapes, densities, materials, and morphologies. We utilized different 3D scanner configurations for their volume measurement and compared the results with geometrical and displacement methods, when possible. Results showed that the proposed method is highly accurate, reproducible, and simple, although some specific precautions should be put in place to avoid misinterpretation by the shape-reconstructing software.\",\"PeriodicalId\":15236,\"journal\":{\"name\":\"Journal of Cellular Plastics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Plastics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0021955x241281880\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Plastics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0021955x241281880","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
In this work, we used a 3D scanner for the volume measurement of foamed samples, a long-standing problem in the density evaluation of foams. The 3D scanning density measurement method can be selected as an alternative to or in combination with well-established, classical methods that involve the use of instruments like a caliper, a pycnometer, or other devices based on displacement or flotation principles. In particular, the classical methods show some limitations when the foamed sample geometry is irregular, when the polymer is highly hygroscopic, and when it has open porosities. We have tested numerous foamed samples of different sizes, shapes, densities, materials, and morphologies. We utilized different 3D scanner configurations for their volume measurement and compared the results with geometrical and displacement methods, when possible. Results showed that the proposed method is highly accurate, reproducible, and simple, although some specific precautions should be put in place to avoid misinterpretation by the shape-reconstructing software.
期刊介绍:
The Journal of Cellular Plastics is a fully peer reviewed international journal that publishes original research and review articles covering the latest advances in foamed plastics technology.