利用稀疏模型进行地下缺陷检测的不确定性量化和灵敏度分析

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Journal of Nondestructive Evaluation Pub Date : 2024-09-06 DOI:10.1007/s10921-024-01114-4
Theodoros Zygiridis, Athanasios Kyrgiazoglou, Stamatios Amanatiadis, Nikolaos Kantartzis, Theodoros Theodoulidis
{"title":"利用稀疏模型进行地下缺陷检测的不确定性量化和灵敏度分析","authors":"Theodoros Zygiridis,&nbsp;Athanasios Kyrgiazoglou,&nbsp;Stamatios Amanatiadis,&nbsp;Nikolaos Kantartzis,&nbsp;Theodoros Theodoulidis","doi":"10.1007/s10921-024-01114-4","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this paper is to conduct a thorough investigation of a stochastic eddy-current testing problem, when the geometric parameters of the system under study are characterized by uncertainty. Focusing on the case of subsurface defect detection, we devise reliable surrogates for the quantities of interest (QoI) based on the principles of the generalized polynomial chaos (PC) and using the orthogonal matching pursuit (OMP) solver to promote sparsity in the approximate models. In addition, a variance-based approach is implemented for the sequential construction of the necessary sample set, enabling more accurate estimation of the statistical metrics without imposing additional computational overhead. Apart from quantifying the inherent uncertainty, a sensitivity analysis is performed that assesses the impact of each geometric variable on the QoI, via the computation of Sobol indices. The efficiency of the OMP-PC algorithm is demonstrated in two variants of the subsurface-discontinuity problem, yielding at the same time useful conclusions regarding the properties of the stochastic outputs.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty Quantification and Sensitivity Analysis in Subsurface Defect Detection with Sparse Models\",\"authors\":\"Theodoros Zygiridis,&nbsp;Athanasios Kyrgiazoglou,&nbsp;Stamatios Amanatiadis,&nbsp;Nikolaos Kantartzis,&nbsp;Theodoros Theodoulidis\",\"doi\":\"10.1007/s10921-024-01114-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this paper is to conduct a thorough investigation of a stochastic eddy-current testing problem, when the geometric parameters of the system under study are characterized by uncertainty. Focusing on the case of subsurface defect detection, we devise reliable surrogates for the quantities of interest (QoI) based on the principles of the generalized polynomial chaos (PC) and using the orthogonal matching pursuit (OMP) solver to promote sparsity in the approximate models. In addition, a variance-based approach is implemented for the sequential construction of the necessary sample set, enabling more accurate estimation of the statistical metrics without imposing additional computational overhead. Apart from quantifying the inherent uncertainty, a sensitivity analysis is performed that assesses the impact of each geometric variable on the QoI, via the computation of Sobol indices. The efficiency of the OMP-PC algorithm is demonstrated in two variants of the subsurface-discontinuity problem, yielding at the same time useful conclusions regarding the properties of the stochastic outputs.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"43 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-024-01114-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01114-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是在所研究系统的几何参数具有不确定性的情况下,对随机涡流测试问题进行深入研究。我们以地下缺陷检测为重点,基于广义多项式混沌(PC)原理,并使用正交匹配追求(OMP)求解器促进近似模型的稀疏性,为相关量(QoI)设计了可靠的代理变量。此外,还采用了一种基于方差的方法来按顺序构建必要的样本集,从而在不增加额外计算开销的情况下更准确地估算统计指标。除了对固有的不确定性进行量化外,还进行了敏感性分析,通过计算 Sobol 指数来评估每个几何变量对 QoI 的影响。OMP-PC 算法的效率在子曲面不连续问题的两个变体中得到了验证,同时得出了有关随机输出属性的有用结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncertainty Quantification and Sensitivity Analysis in Subsurface Defect Detection with Sparse Models

The purpose of this paper is to conduct a thorough investigation of a stochastic eddy-current testing problem, when the geometric parameters of the system under study are characterized by uncertainty. Focusing on the case of subsurface defect detection, we devise reliable surrogates for the quantities of interest (QoI) based on the principles of the generalized polynomial chaos (PC) and using the orthogonal matching pursuit (OMP) solver to promote sparsity in the approximate models. In addition, a variance-based approach is implemented for the sequential construction of the necessary sample set, enabling more accurate estimation of the statistical metrics without imposing additional computational overhead. Apart from quantifying the inherent uncertainty, a sensitivity analysis is performed that assesses the impact of each geometric variable on the QoI, via the computation of Sobol indices. The efficiency of the OMP-PC algorithm is demonstrated in two variants of the subsurface-discontinuity problem, yielding at the same time useful conclusions regarding the properties of the stochastic outputs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
期刊最新文献
Electromagnetic Radiation Characteristics and Mechanical Properties of Cement-Mortar Under Impact Load Instance Segmentation XXL-CT Challenge of a Historic Airplane Publisher Correction: Intelligent Extraction of Surface Cracks on LNG Outer Tanks Based on Close-Range Image Point Clouds and Infrared Imagery Acoustic Emission Signal Feature Extraction for Bearing Faults Using ACF and GMOMEDA Modeling and Analysis of Ellipticity Dispersion Characteristics of Lamb Waves in Pre-stressed Plates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1