{"title":"基于具有角度稳定性的新型选频表面的高增益紧凑型 CPW 馈电 UWB 天线","authors":"Fatemeh Zadehparizi","doi":"10.1007/s40998-024-00753-7","DOIUrl":null,"url":null,"abstract":"<p>This study presents a compact co-planar waveguide (CPW) ultra-wideband (UWB) antenna integrated with a novel frequency selective surface (FSS) for gain improvement. The novel FSS is created by etching some slots on a square patch and adding different patches during five steps. The presented FSS provides transmission coefficient lower than − 10 dB and reflection coefficient close to 0 dB across the frequency bands of 3–15.7 GHz, and 3.6–15.1 GHz for transverse electric (TE) and transverse magnetic (TM) modes with adequate angular stability, respectively. Angular stability is maintained up to θ = 85° and 40° in the TE and TM planes, respectively. Furthermore, the reflection phase decreases linearly piecewise, making it appropriate for radiation enhancement of the antenna. A 4 × 4 array of the proposed FSS unit cells is positioned below the circular CPW antenna at an optimized distance of 20 mm. Then, to improve the reflection coefficient, a rectangular notch is etching on the radiating patch. The modified structure operates over an impedance bandwidth (S<sub>11</sub> < − 10 dB) of 3.4–13.8 GHz for UWB applications with a peak gain of 7.40 dBi at 12.5 GHz. The overall physical and electrical volumes of the proposed antenna are 32 × 32 × 23.2 mm<sup>3</sup> and 0.36λ<sub>L</sub> × 0.36λ<sub>L</sub> × 0.26λ<sub>L</sub> (λ<sub>L</sub> is the wavelength at the lower frequency), respectively that is considerably compact. The proposed antenna is fabricated, and the comparison of the simulated and measured results shows a good agreement.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":"79 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High Gain and Compact CPW-fed UWB Antenna Based on a Novel Frequency Selective Surface with Angular Stability\",\"authors\":\"Fatemeh Zadehparizi\",\"doi\":\"10.1007/s40998-024-00753-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a compact co-planar waveguide (CPW) ultra-wideband (UWB) antenna integrated with a novel frequency selective surface (FSS) for gain improvement. The novel FSS is created by etching some slots on a square patch and adding different patches during five steps. The presented FSS provides transmission coefficient lower than − 10 dB and reflection coefficient close to 0 dB across the frequency bands of 3–15.7 GHz, and 3.6–15.1 GHz for transverse electric (TE) and transverse magnetic (TM) modes with adequate angular stability, respectively. Angular stability is maintained up to θ = 85° and 40° in the TE and TM planes, respectively. Furthermore, the reflection phase decreases linearly piecewise, making it appropriate for radiation enhancement of the antenna. A 4 × 4 array of the proposed FSS unit cells is positioned below the circular CPW antenna at an optimized distance of 20 mm. Then, to improve the reflection coefficient, a rectangular notch is etching on the radiating patch. The modified structure operates over an impedance bandwidth (S<sub>11</sub> < − 10 dB) of 3.4–13.8 GHz for UWB applications with a peak gain of 7.40 dBi at 12.5 GHz. The overall physical and electrical volumes of the proposed antenna are 32 × 32 × 23.2 mm<sup>3</sup> and 0.36λ<sub>L</sub> × 0.36λ<sub>L</sub> × 0.26λ<sub>L</sub> (λ<sub>L</sub> is the wavelength at the lower frequency), respectively that is considerably compact. The proposed antenna is fabricated, and the comparison of the simulated and measured results shows a good agreement.</p>\",\"PeriodicalId\":49064,\"journal\":{\"name\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40998-024-00753-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00753-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A High Gain and Compact CPW-fed UWB Antenna Based on a Novel Frequency Selective Surface with Angular Stability
This study presents a compact co-planar waveguide (CPW) ultra-wideband (UWB) antenna integrated with a novel frequency selective surface (FSS) for gain improvement. The novel FSS is created by etching some slots on a square patch and adding different patches during five steps. The presented FSS provides transmission coefficient lower than − 10 dB and reflection coefficient close to 0 dB across the frequency bands of 3–15.7 GHz, and 3.6–15.1 GHz for transverse electric (TE) and transverse magnetic (TM) modes with adequate angular stability, respectively. Angular stability is maintained up to θ = 85° and 40° in the TE and TM planes, respectively. Furthermore, the reflection phase decreases linearly piecewise, making it appropriate for radiation enhancement of the antenna. A 4 × 4 array of the proposed FSS unit cells is positioned below the circular CPW antenna at an optimized distance of 20 mm. Then, to improve the reflection coefficient, a rectangular notch is etching on the radiating patch. The modified structure operates over an impedance bandwidth (S11 < − 10 dB) of 3.4–13.8 GHz for UWB applications with a peak gain of 7.40 dBi at 12.5 GHz. The overall physical and electrical volumes of the proposed antenna are 32 × 32 × 23.2 mm3 and 0.36λL × 0.36λL × 0.26λL (λL is the wavelength at the lower frequency), respectively that is considerably compact. The proposed antenna is fabricated, and the comparison of the simulated and measured results shows a good agreement.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.