{"title":"南印度患者的 MnSOD、CAT 和 GPx1 基因多态性与糖尿病肾病风险的关系:病例对照研究","authors":"Farhana Begum, Karpagavel Lakshmanan","doi":"10.1007/s10528-024-10910-6","DOIUrl":null,"url":null,"abstract":"<p>Diabetic nephropathy (DN) is one of the common complications of type 2 diabetes mellitus (T2DM), and oxidative stress plays a key role in the pathogenesis of DN. Studies have demonstrated that antioxidants (MnSOD, CAT, and GPx1) may reduce the complications associated with T2DM. The purpose of the study is to correlate the role of antioxidant gene polymorphisms in the pathogenesis of DN among T2DM individuals in the South Indian population. It clarifies the importance of early manifestation and reliable genetic indicators modulating the oxidative stress mechanism in DN. The study participants were divided and grouped as Group 1: Control, Group 2: T2DM without DN, and Group 3: T2DM with DN (n = 100 in each group). The levels of plasma glucose, HbA1c, renal profile, SOD, CAT, GPx1, MDA, and TAS were assessed. MnSOD (rs4880), CAT (rs1049982), and GPx1 (rs1050450) polymorphisms were genotyped via Tetra-arms PCR. The genotypes of GPx1 depict a significant role in the progression of DN in T2DM patients (co-dominant [OR: 2.134; 95% CI (1.202–3.788), <i>p</i> < 0.01], dominant [OR: 2.015; 95% CI (1.117–3.634), <i>p</i> = 0.02], and recessive model [OR: 2.215; 95% CI (1.235–3.972), <i>p</i> = 0.008]); whereas rs4880 and rs1049982 polymorphisms are not associated with DN progression. As a result, GPx1 (rs1050450) polymorphism could be a diagnostic risk factor for developing DN in T2DM patients. Moreover, the genotypes of rs4880 and rs1049982 polymorphism show significant difference in the antioxidant parameters compared to the genotypes of rs1050450. In contradiction to earlier studies, the current study demonstrates that the genotypes of rs1050450 (GPx1) can be considered as an influential component for higher susceptibility and risk of developing DN in T2DM patients among the South Indian population.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of MnSOD, CAT, and GPx1 Gene Polymorphism with Risk of Diabetic Nephropathy in South Indian Patients: A Case–Control Study\",\"authors\":\"Farhana Begum, Karpagavel Lakshmanan\",\"doi\":\"10.1007/s10528-024-10910-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diabetic nephropathy (DN) is one of the common complications of type 2 diabetes mellitus (T2DM), and oxidative stress plays a key role in the pathogenesis of DN. Studies have demonstrated that antioxidants (MnSOD, CAT, and GPx1) may reduce the complications associated with T2DM. The purpose of the study is to correlate the role of antioxidant gene polymorphisms in the pathogenesis of DN among T2DM individuals in the South Indian population. It clarifies the importance of early manifestation and reliable genetic indicators modulating the oxidative stress mechanism in DN. The study participants were divided and grouped as Group 1: Control, Group 2: T2DM without DN, and Group 3: T2DM with DN (n = 100 in each group). The levels of plasma glucose, HbA1c, renal profile, SOD, CAT, GPx1, MDA, and TAS were assessed. MnSOD (rs4880), CAT (rs1049982), and GPx1 (rs1050450) polymorphisms were genotyped via Tetra-arms PCR. The genotypes of GPx1 depict a significant role in the progression of DN in T2DM patients (co-dominant [OR: 2.134; 95% CI (1.202–3.788), <i>p</i> < 0.01], dominant [OR: 2.015; 95% CI (1.117–3.634), <i>p</i> = 0.02], and recessive model [OR: 2.215; 95% CI (1.235–3.972), <i>p</i> = 0.008]); whereas rs4880 and rs1049982 polymorphisms are not associated with DN progression. As a result, GPx1 (rs1050450) polymorphism could be a diagnostic risk factor for developing DN in T2DM patients. Moreover, the genotypes of rs4880 and rs1049982 polymorphism show significant difference in the antioxidant parameters compared to the genotypes of rs1050450. In contradiction to earlier studies, the current study demonstrates that the genotypes of rs1050450 (GPx1) can be considered as an influential component for higher susceptibility and risk of developing DN in T2DM patients among the South Indian population.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-024-10910-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10910-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Association of MnSOD, CAT, and GPx1 Gene Polymorphism with Risk of Diabetic Nephropathy in South Indian Patients: A Case–Control Study
Diabetic nephropathy (DN) is one of the common complications of type 2 diabetes mellitus (T2DM), and oxidative stress plays a key role in the pathogenesis of DN. Studies have demonstrated that antioxidants (MnSOD, CAT, and GPx1) may reduce the complications associated with T2DM. The purpose of the study is to correlate the role of antioxidant gene polymorphisms in the pathogenesis of DN among T2DM individuals in the South Indian population. It clarifies the importance of early manifestation and reliable genetic indicators modulating the oxidative stress mechanism in DN. The study participants were divided and grouped as Group 1: Control, Group 2: T2DM without DN, and Group 3: T2DM with DN (n = 100 in each group). The levels of plasma glucose, HbA1c, renal profile, SOD, CAT, GPx1, MDA, and TAS were assessed. MnSOD (rs4880), CAT (rs1049982), and GPx1 (rs1050450) polymorphisms were genotyped via Tetra-arms PCR. The genotypes of GPx1 depict a significant role in the progression of DN in T2DM patients (co-dominant [OR: 2.134; 95% CI (1.202–3.788), p < 0.01], dominant [OR: 2.015; 95% CI (1.117–3.634), p = 0.02], and recessive model [OR: 2.215; 95% CI (1.235–3.972), p = 0.008]); whereas rs4880 and rs1049982 polymorphisms are not associated with DN progression. As a result, GPx1 (rs1050450) polymorphism could be a diagnostic risk factor for developing DN in T2DM patients. Moreover, the genotypes of rs4880 and rs1049982 polymorphism show significant difference in the antioxidant parameters compared to the genotypes of rs1050450. In contradiction to earlier studies, the current study demonstrates that the genotypes of rs1050450 (GPx1) can be considered as an influential component for higher susceptibility and risk of developing DN in T2DM patients among the South Indian population.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.