Shaojun Dai, Jian Zhou, Xianping Ning, Jianxin Xu, Hua Wang
{"title":"基于 RGB 植被指数的野生部分植被覆盖率估算模型及其应用","authors":"Shaojun Dai, Jian Zhou, Xianping Ning, Jianxin Xu, Hua Wang","doi":"10.1515/geo-2022-0661","DOIUrl":null,"url":null,"abstract":"An accurate survey of field vegetation information facilitates the evaluation of ecosystems and the improvement of remote sensing models. Extracting fractional vegetation cover (FVC) information using aerial images is one of the important areas of unmanned aerial vehicles. However, for a field with diverse vegetation species and a complex surface environment, FVC estimation still has difficulty guaranteeing accuracy. A segmented FVC calculation method based on a thresholding algorithm is proposed to improve the accuracy and speed of FVC estimation. The FVC estimation models were analyzed by randomly selected sample images using four vegetation indices: excess green, excess green minus excess red index, green leaf index, and red green blue vegetation index (RGBVI). The results showed that the empirical model method performed poorly (validating <jats:italic>R</jats:italic> <jats:sup>2</jats:sup> = 0.655 to 0.768). The isodata and triangle thresholding algorithms were introduced for vegetation segmentation, and their accuracy was analyzed. The results showed that the correlation between FVC estimation under RGBVI was the highest, and the triangle and isodata thresholding algorithms were complementary in terms of vegetation recognition accuracy, based on which a segmentation method of FVC calculation combining triangle and isodata algorithms was proposed. After testing, the accuracy of the improved FVC calculation method is higher than 90%, and the vegetation recognition accuracy is improved to more than 80%. This study is a positive guide to using digital cameras in field surveys.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation model of wild fractional vegetation cover based on RGB vegetation index and its application\",\"authors\":\"Shaojun Dai, Jian Zhou, Xianping Ning, Jianxin Xu, Hua Wang\",\"doi\":\"10.1515/geo-2022-0661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate survey of field vegetation information facilitates the evaluation of ecosystems and the improvement of remote sensing models. Extracting fractional vegetation cover (FVC) information using aerial images is one of the important areas of unmanned aerial vehicles. However, for a field with diverse vegetation species and a complex surface environment, FVC estimation still has difficulty guaranteeing accuracy. A segmented FVC calculation method based on a thresholding algorithm is proposed to improve the accuracy and speed of FVC estimation. The FVC estimation models were analyzed by randomly selected sample images using four vegetation indices: excess green, excess green minus excess red index, green leaf index, and red green blue vegetation index (RGBVI). The results showed that the empirical model method performed poorly (validating <jats:italic>R</jats:italic> <jats:sup>2</jats:sup> = 0.655 to 0.768). The isodata and triangle thresholding algorithms were introduced for vegetation segmentation, and their accuracy was analyzed. The results showed that the correlation between FVC estimation under RGBVI was the highest, and the triangle and isodata thresholding algorithms were complementary in terms of vegetation recognition accuracy, based on which a segmentation method of FVC calculation combining triangle and isodata algorithms was proposed. After testing, the accuracy of the improved FVC calculation method is higher than 90%, and the vegetation recognition accuracy is improved to more than 80%. This study is a positive guide to using digital cameras in field surveys.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/geo-2022-0661\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/geo-2022-0661","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Estimation model of wild fractional vegetation cover based on RGB vegetation index and its application
An accurate survey of field vegetation information facilitates the evaluation of ecosystems and the improvement of remote sensing models. Extracting fractional vegetation cover (FVC) information using aerial images is one of the important areas of unmanned aerial vehicles. However, for a field with diverse vegetation species and a complex surface environment, FVC estimation still has difficulty guaranteeing accuracy. A segmented FVC calculation method based on a thresholding algorithm is proposed to improve the accuracy and speed of FVC estimation. The FVC estimation models were analyzed by randomly selected sample images using four vegetation indices: excess green, excess green minus excess red index, green leaf index, and red green blue vegetation index (RGBVI). The results showed that the empirical model method performed poorly (validating R2 = 0.655 to 0.768). The isodata and triangle thresholding algorithms were introduced for vegetation segmentation, and their accuracy was analyzed. The results showed that the correlation between FVC estimation under RGBVI was the highest, and the triangle and isodata thresholding algorithms were complementary in terms of vegetation recognition accuracy, based on which a segmentation method of FVC calculation combining triangle and isodata algorithms was proposed. After testing, the accuracy of the improved FVC calculation method is higher than 90%, and the vegetation recognition accuracy is improved to more than 80%. This study is a positive guide to using digital cameras in field surveys.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.