{"title":"人类世的植物灭绝","authors":"Maarten J M Christenhusz, Rafaël Govaerts","doi":"10.1093/botlinnean/boae045","DOIUrl":null,"url":null,"abstract":"Species go extinct each day, most without notice. The current human-induced extinction rate is up to 700 times higher than the background rate. Extinctions are not different for plants, animals, or fungi, although botanical and invertebrate extinctions are much more poorly documented than those of charismatic vertebrates. In a recent book on extinct plants (Christenhusz & Govaerts, 2023), an overview of botanical extinctions since 1753 was presented, listing which species became extinct and the probable reason for their extinction. As most have a date when they were last documented, a timeline of extinction can also be compiled based on these data. This timeline shows an increase from 1890 to 1940, but a decline in new recorded extinctions after the 1980s, which is likely a result of taxonomic impediment. Extinction rates before 1800 are impacted by the lack of data (here named Berkeley extinction). It can be concluded that extinction is highest in biodiversity-rich areas with high human influence (extinction hotspots). Two new combinations and a new name are proposed here, showing the importance of taxonomy to conservation. Although anthropogenic plant extinction is a global phenomenon, areas of particular concern are the Hawaiian Islands, southern Africa, Australia, the Indian Subcontinent, Southeast Asia, and Brazil. Extinctions have been mainly caused by land clearing for agriculture and urbanization, invasive feral animals, mining, river dams, diseases, and poaching. We predict that the unusual weather patterns associated with rapid climate change may result in more plant extinctions. Reintroduction, even if a species persists in cultivation, is not always possible due to lack of suitable remaining habitat where threats are decreased or removed. Successful reintroduction cannot be guaranteed. It is costly and usually dependent on short-term funding, after which these efforts may be in vain. Protection of species in their natural habitat is much more cost-effective in the long term. Sometimes, rescued plants should be introduced in similar habitats outside their natural range where the threats are absent. This follows the programmes of assisted migration for climate change mitigation, but this can also be assisted introduction to prevent extinction. Protection of critically endangered species that have naturalized outside their native range should also be considered.","PeriodicalId":9178,"journal":{"name":"Botanical Journal of the Linnean Society","volume":"18 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant extinction in the Anthropocene\",\"authors\":\"Maarten J M Christenhusz, Rafaël Govaerts\",\"doi\":\"10.1093/botlinnean/boae045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Species go extinct each day, most without notice. The current human-induced extinction rate is up to 700 times higher than the background rate. Extinctions are not different for plants, animals, or fungi, although botanical and invertebrate extinctions are much more poorly documented than those of charismatic vertebrates. In a recent book on extinct plants (Christenhusz & Govaerts, 2023), an overview of botanical extinctions since 1753 was presented, listing which species became extinct and the probable reason for their extinction. As most have a date when they were last documented, a timeline of extinction can also be compiled based on these data. This timeline shows an increase from 1890 to 1940, but a decline in new recorded extinctions after the 1980s, which is likely a result of taxonomic impediment. Extinction rates before 1800 are impacted by the lack of data (here named Berkeley extinction). It can be concluded that extinction is highest in biodiversity-rich areas with high human influence (extinction hotspots). Two new combinations and a new name are proposed here, showing the importance of taxonomy to conservation. Although anthropogenic plant extinction is a global phenomenon, areas of particular concern are the Hawaiian Islands, southern Africa, Australia, the Indian Subcontinent, Southeast Asia, and Brazil. Extinctions have been mainly caused by land clearing for agriculture and urbanization, invasive feral animals, mining, river dams, diseases, and poaching. We predict that the unusual weather patterns associated with rapid climate change may result in more plant extinctions. Reintroduction, even if a species persists in cultivation, is not always possible due to lack of suitable remaining habitat where threats are decreased or removed. Successful reintroduction cannot be guaranteed. It is costly and usually dependent on short-term funding, after which these efforts may be in vain. Protection of species in their natural habitat is much more cost-effective in the long term. Sometimes, rescued plants should be introduced in similar habitats outside their natural range where the threats are absent. This follows the programmes of assisted migration for climate change mitigation, but this can also be assisted introduction to prevent extinction. Protection of critically endangered species that have naturalized outside their native range should also be considered.\",\"PeriodicalId\":9178,\"journal\":{\"name\":\"Botanical Journal of the Linnean Society\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Botanical Journal of the Linnean Society\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/botlinnean/boae045\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botanical Journal of the Linnean Society","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/botlinnean/boae045","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Species go extinct each day, most without notice. The current human-induced extinction rate is up to 700 times higher than the background rate. Extinctions are not different for plants, animals, or fungi, although botanical and invertebrate extinctions are much more poorly documented than those of charismatic vertebrates. In a recent book on extinct plants (Christenhusz & Govaerts, 2023), an overview of botanical extinctions since 1753 was presented, listing which species became extinct and the probable reason for their extinction. As most have a date when they were last documented, a timeline of extinction can also be compiled based on these data. This timeline shows an increase from 1890 to 1940, but a decline in new recorded extinctions after the 1980s, which is likely a result of taxonomic impediment. Extinction rates before 1800 are impacted by the lack of data (here named Berkeley extinction). It can be concluded that extinction is highest in biodiversity-rich areas with high human influence (extinction hotspots). Two new combinations and a new name are proposed here, showing the importance of taxonomy to conservation. Although anthropogenic plant extinction is a global phenomenon, areas of particular concern are the Hawaiian Islands, southern Africa, Australia, the Indian Subcontinent, Southeast Asia, and Brazil. Extinctions have been mainly caused by land clearing for agriculture and urbanization, invasive feral animals, mining, river dams, diseases, and poaching. We predict that the unusual weather patterns associated with rapid climate change may result in more plant extinctions. Reintroduction, even if a species persists in cultivation, is not always possible due to lack of suitable remaining habitat where threats are decreased or removed. Successful reintroduction cannot be guaranteed. It is costly and usually dependent on short-term funding, after which these efforts may be in vain. Protection of species in their natural habitat is much more cost-effective in the long term. Sometimes, rescued plants should be introduced in similar habitats outside their natural range where the threats are absent. This follows the programmes of assisted migration for climate change mitigation, but this can also be assisted introduction to prevent extinction. Protection of critically endangered species that have naturalized outside their native range should also be considered.
期刊介绍:
The Botanical Journal of the Linnean Society publishes original papers on systematic and evolutionary botany and comparative studies of both living and fossil plants. Review papers are also welcomed which integrate fields such as cytology, morphogenesis, palynology and phytochemistry into a taxonomic framework. The Journal will only publish new taxa in exceptional circumstances or as part of larger monographic or phylogenetic revisions.